MRSA Pneumonia Manal Tadros PGY5 **Medical Microbiology Department** University of Toronto **Disclosures** None **OBJECTIVES** Describe the epidemiology & pathogenesis of MRSA pneumonia Present preliminary results of The **Canadian MRSA Pneumonia Outcome** Study (CaMPOS)

Epidemiology of MRSA pneumonia

- MRSA causes about 20%-40% of hospital-acquired pneumonia (HAP/HCAP) and ventilator-associated pneumonia (VAP) in US and other countries
- 1%-5% of Community associated pneumonia (CAP)
- Special concern about CA-MRSA strains: US 300/CMRSA-10

Mandell and Wundernik CID 2012:54;1134-36

Epidemiology of MRSA pneumonia cont.

- US300/CMRSA-10 reported to cause severe pneumonia: high fever, cavitary lung lesions hypotension, and hemoptysis followed by rapid progression to septic shock and requirement for ventilator support
- High mortality rate (50%) was initially reported¹
- MR 37% in recent reports²

1 Dufour et al CID 2002 2 Haque et al JCM 2012

Dathogonocic of MARSA Decimalistics of Exponential growth phase (exponential growth phase) Secreted proteins (exponential growth phase) A Coagulase Enterotoxin B TSST-1 Colleges-binding protein Colleges-binding protein Exponential growth phase Colleges-binding protein Colleges-binding growth phase Consultationary pha

Panton- Valentine Leukocidin

Kahl BC, Peters G. Microbiology: mayhem in the lung. Science 2007; 315:182-1083

Lack of a Major Role of *Staphylococcus aureus* Panton-Valentine Leukocidin in Lower Respiratory Tract Infection in Nonhuman Primates

Olsen et al, *The American Journal of Pathology,* Vol. 176, No. 3, March 2010

Other Virulence Factors

- Alpha-Hemolysin¹
- Arginine Catabolic Mobile element²
- Accessory Gene Regulator³

1 Wardenburg et al Nat Med, 2007 2 Diep et al, JID,2008 3 Schewizer et al AAC, 2010

The Canadian MRSA Pneumonia Study (CaMPOS)

Study Objective:

 To determine the epidemiology, incidence, and outcome of MRSA pneumonia in adult patients admitted to Canadian hospitals

Sites:

- 1 year surveillance in eleven hospital sites from different areas across Canada.
- Funding:

Sponsored by Pfizer

PΙ

• Dr. A. E. Simor

Laboratory Investigations

The initial clinical (respiratory) or blood isolate of MRSA from each patient was analyzed for:

- Antimicrobial susceptibilities,
- molecular type by PFGE, SCC_{mec} type
- PVL gene detection.

•	

CaMPOS

Results

- 161 cases of MRSA pneumonia
- CAP= 45 (28%)
- HCAP=116 (72%)

36 ICU associated, 23 VAP

- Mean age was 64, SD 17.2
- Overall MRSA pneumonia rate was 0.47/10,000 patient-days
- HA- MRSA pneumonia rate was 0.33/10,000 patient days

Co-variates	Died at 30 d	Survived at	U	Univariate anlysis Multivariate		tivariate a	analysis	
	n=45	30 d n=116			-			-
			OR	95%CI	<i>p</i> value	OR	95%CI	pvalue
Age >65 n(%)	27(60)	57(49)	1.5	0.7-3.1	0.2	0.9	0.9-1.0	0.747
Males n (%)	30(66.7)	78(67.2)	0.9	0.4-2.0	1			
MRSA bacteremia n (%)	18(40)	20(17.2)	3.4	1.5-7.4	0.003	1.5	0.4-5.5	0.4
HCAP n (%)	36(80)	80(68.9)	1.8	0.7-4.1	0.17	1.4	0.3-7.0	0.6
CAP n (%)	9(20)	36(31.0)	0.5	0.2-1.2	0.17			
MRSA VAP n(%)	5(11.1)	18(15.5)	0.6	0.2-1.9	0.6			
ID consulted n(%)	17(37.8)	49 (42.2)	0.8	0.4-1.7	0.7			
COPD n(%)	14 (31.1)	23 (19.2)	1.8	0.8-3.9	0.14			
DM n (%)	14 (31.1)	31(26.7)	1.2	0.5-2.6	0.5			
Cirrhosis n(%)	5 (11.1)	2 (1.7)	7.1	1.3-38.1	0.01			
Steroids >2 weeks n(%)	2(4.4)	6(5.1)	0.8	0.1-4.3	1			
Multi-organ failure	16(35.5)	5(4.3)	12.2	4.1-36.2	<0.001	8.2	1.7-38.6	0.008
Appropriate empiric therapy used n(%) (Vanco/Linezolid)	15(33.3)	36 (31)	1.1	0.5-2.3	0.8			
Mean Vanco troughs (SD)	14.5(6.7)	14.3 (10.1)			0.9			
PFGE type CMRSA 10 n(%)	11(27)	29(28)	8.0	0.36-1.9	0.6			
PFGE type CMRSA 2 n(%)	26(63.4)	57(54.8)	1.4	0.6-3.0	0.3			
PVL+	11(27)	30(29)	0.9	0.4-2.0	$\overline{}$	2.4	0.5-10.7	0.2

Conclusions

- MRSA pneumonia rates in Canadian hospitals are relatively low
- This infection was associated with 28% 30-day mortality. Variables associated with increased mortality included the presence of bacteremia or cirrhosis.
- Microbial factors (such as PFGE type, PVL gene,) were not associated with increased mortality

THANK YOU				
Dr. A. McGeer	Dr.J. Powis			
Dr. B.Coleman	C. Watt			
Dr. C. Lee	V.Williams			
Dr. E.Rubinstein	Dr. S. McNeil			
Dr. K. Katz	Dr.G. Taylor			
Dr. K. Suh	Dr. A. Simor			
Dr. M. John	Microbiology at all sites			
Dr. S. Haider	Infection Control Departments			

