MYCOLOGY MANUAL

TABLE OF CONTENTS

Lab Safety ...4
Daily Routine of the Mycology Lab ...5
Pre-analytical Procedure - Specimen Collection QPCMI02001...6
Specimen Processing Procedure QPCMI06003..6

ISOLATION AND IDENTIFICATION

Reading of cultures ...7
A) Filamentous Fungi ...7
B) Yeast ..10
C) Nocardia ...12

REPORTING ..13

STAINING METHODS:

Acid-Fast Stain for Nocardia (Modified Kinyoun) ...16
Calcofluor White Stain ..18
Fungi-Fluor™ Stain ..20
GMS and PAS Fungal Stains ..23
India Ink ...24
Lacto Phenol Aniline Blue (LPAB) ..26

ISOLATOR 10 BLOOD CULTURE SYSTEM FOR DIMORPHIC FUNGI29
FLOW CHARTS for IDENTIFICATION:

Flow Chart 1 - Aspergillus
Flow Chart 2 - Dematiaceous
Flow Chart 3 - Dermatophytes
Flow Chart 4 - Hyalohyphomycetes
Flow Chart 5 - White Mould
Flow Chart 6 - Zygomycetes
Flow Chart 7 - Direct Microscopy
Flow Chart 8 - Dimorphic fungi
Flow Chart 9 - Actinomyces
Flow Chart 10 - Yeast

REFERENCES ...31

APPENDICES:

Appendix I -
CONVERSION (Converting Mycelial Phase of Dimorphic Mould to a Yeast Phase)..............32
Appendix II - Cornmeal Tween-80/OXGALL ..33
Appendix III - To Determine Cycloheximide Resistance of an Isolate.................................35
Appendix IV - Fluorescent Microscope (Instructions)...37
Appendix V - Germ Tube Test ...38
Appendix VI - Slide Culture ...40
Appendix VII - Stock Cultures -Water Culture Technique ..43
Appendix IX - API 20 CAUX - Yeast Identification System..44
Appendix X Media/Regents:

BLOOD EGG ALBUMIN AGAR (BEAA) ... 46
BRAIN HEART INFUSION AGAR (BHIA) .. 47
CORNMEAL TWEEN 80 AGAR (OXOID) .. 48
ESCULIN BASE MEDIUM (EBM) .. 49
INHIBITORY MOLD AGAR (IMA) ... 51
LACTOPHENOL ANILINE BLUE STAIN (LPAB) ... 53
MYCOSEL AGAR ... 54
OXGALL AGAR ... 55
POTATO DEXTROSE AGAR (PDA) ... 56
SODIUM PYRUVATE AGAR (NPA) FOR NOCARDIA 57
SABOURAUD AGAR MODIFIED .. 58
SABOURAUD GENTAMICIN (50 mg/L) AGAR SLOPES 59
UREA AGAR SLOPES .. 60
10% POTASSIUM HYDROXIDE ... 61

Record of Edited Revisions .. 62
LAB SAFETY

Refer to Laboratory Safety Manual

Note the following when processing Mycology isolates:

ALL work on filamentous fungus is carried out in LAMINAR AIRFLOW BIOSAFETY CABINET TYPE 2. Bio safety Level 2 procedures are recommended for personnel working with clinical specimens that may contain dimorphic fungi as well as other potential pathogenic fungi. Gloves should be worn for processing specimens and cultures.

If the FILAMENTOUS FUNGUS FORM of a dimorphic fungus is growing or suspected, BIOSAFETY LEVEL 3 procedure and containment should be followed i.e. wear a N95 mask in addition to what is required for Bio safety Level 2 containment.

Wipe off working area with freshly prepared phenolic compound solution before and after each day's work. If a culture is dropped or spilled, pour a freshly prepared 1% sodium hypochlorite over the contaminated area, cover with paper towels and let stand for at least 15 minutes. Wipe off the surface and deposit the contaminated material in an appropriate biohazard disposal container. Clean the surface again using 70% alcohol.
DAILY ROUTINE OF THE MYCOLOGY LAB

1. Check and record the temperature readings of all incubators, refrigerators, and freezers every morning. If there is an abnormal reading, report it to the charge technologist.

2. New cultures received are sorted, matched with the daily worklist, placed in numerical order (accession #) and separated according to reading schedule, and length of incubation. Fungal culture plates are examined, sealed with Parafilm and then placed in appropriate stacks and incubated at 28°C. Any culture medium showing fungal growth is removed for further work-up.

3. Fungal smears are stained and read twice daily - once before noon and again in the afternoon. All smears must be read within 24 hours except on Weekends and Holidays. All positive smears showing septate/aseptate hyphae, Pneumocystis carinii or yeast suggestive of Histoplasma, Blastomycetes or Cryptococcus are checked by the senior mycology technologist or the microbiologist.

4. Screening and reading cultures:
 i) CSF, blood and lung biopsy (and special request) cultures are read daily for the first two weeks and two times a week for the remaining incubation period. Positive specimens are worked up immediately.
 ii) Routine screening of all other fungal cultures is done three times a week for the first two weeks and two times a week for the remaining incubation period. LPAB (Lactophenol Aniline Blue) preparations are made at least twice a week or daily depending on volumes. Any mold referred from the bacteriology section is processed and worked up the same day (except weekends and holidays). All LPAB preparations are checked by the senior mycology technologist or the microbiologist.
SPECIMEN COLLECTION AND TRANSPORTATION

See Pre-analytical Procedure - Specimen Collection QPCMI02001

PROCESSING OF SPECIMENS

See Specimen Processing Procedure QPCMI06003
ISOLATION AND IDENTIFICATION

I. Reading of cultures

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Incubation Period (Weeks) at 28°C</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special Request Dimorphic</td>
<td>6 weeks</td>
<td>Read daily for 2 weeks; then 3 times per week for the remaining 4 weeks.</td>
</tr>
<tr>
<td>Isolator Blood Cultures</td>
<td>4 weeks</td>
<td>Read daily for 1 week; then 3 times per week for the remaining 3 weeks.</td>
</tr>
<tr>
<td>Tissues</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sterile Fluids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory Tract Specimens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAL (Routine Lung Transplant)</td>
<td>2 weeks</td>
<td>Read daily for 1 week; then 3 times per week for the remaining 1 week.</td>
</tr>
<tr>
<td>Environmental</td>
<td>5 days</td>
<td>Read on Day 1 and then on Day 5.</td>
</tr>
<tr>
<td>Special Request Malassezia</td>
<td>1 week</td>
<td>Read daily for 1 week</td>
</tr>
<tr>
<td>Other specimens</td>
<td>3 weeks</td>
<td>Read daily for 1 week; then 3 times per week for the remaining 2 weeks.</td>
</tr>
</tbody>
</table>

II. Identification

A) FILAMENTOUS FUNGI

Introduction:

Most filamentous fungi can be identified based on a combination of colonial morphology and microscopic features. Pathogenic dimorphic fungi such as Blastomyces, Histoplasma, Sporothrix, etc., can often be presumptively identified by the presence of their characteristic conidia seen on Lactophenol Aniline Blue (LPAB) preparations of culture isolates.

The extent to which a filamentous fungus is identified in the laboratory will depend on several factors.

The following should be used as a guide. If there is any question regarding the extent to which a filamentous fungus should be identified, consult with the microbiologist or senior mycology technologist.

a) Sterile site specimens:

Identify all filamentous fungi isolated. Possible culture contaminants (e.g. a single colony of Penicillium species or other saprophytes growing on only one of several
media) should be checked with the Senior Technologist or the Microbiologist before proceeding.

b) All other specimens:
 Identify all filamentous fungi isolated.

Procedure:
Examine the culture plates as per Reading of Cultures Schedule and record the macroscopic and microscopic findings in the LIS Media Comment field.

Macroscopic Examination
1. Colonial morphology
2. Surface pigment on non-blood containing medium
3. Reverse pigment on non-blood containing medium
4. Growth on cycloheximide containing medium

Microscopic Examination
1. Prepare a tease mount or scotch tape preparation of each fungus colony type from each media using Lactophenol Aniline Blue (LPAB).
2. Under the light microscope, examine the slide(s) for the presence, shape, size and attachment of conidia. Compare and match the above features with those described in a reference textbook.
3. If the filamentous fungus can be identified from the LPAB preparation, mark the identified colony (ies) with an “X” on the back of the culture plate(s) [if more than one type of fungus is identified, place number (e.g. 1, 2, 3, etc) beside the “X” which matches the number and identification entered into the LIS]. Re-incubate the original culture plates for the remaining incubation period and examine plates for additional growth.

 Report the identification according the instructions in the Reporting Section.

4. If the filamentous fungus is producing conidia but cannot be identified, determine the significance of the isolate whether it is a probable pathogen, a possible pathogen (i.e. opportunistic fungus) or an unlikely pathogen (i.e. saprophyte), take into consideration the following:
 • Direct smear result
 • Pathology report if available
 • Clinical data
 • Growth on cycloheximide containing media
 • Growth at 37°C
5. Set up a slide culture (see Appendix VI - Slide Culture) if full identification is needed.

6. If the filamentous fungus does not produce conidia, subculture the fungus onto the media as outlined below. Re-incubate the original plates for the remaining incubation period.

<table>
<thead>
<tr>
<th>Media</th>
<th>Incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coloured Mould:</td>
<td></td>
</tr>
<tr>
<td>Potato Dextrose Agar (PDA)</td>
<td>O₂, 28°C</td>
</tr>
<tr>
<td>SAB</td>
<td>O₂, 37°C</td>
</tr>
<tr>
<td>White Mould:</td>
<td></td>
</tr>
<tr>
<td>Potato Dextrose Agar (PDA)</td>
<td>O₂, 28°C</td>
</tr>
<tr>
<td>Mycosel Agar</td>
<td>O₂, 28°C</td>
</tr>
<tr>
<td>SAB</td>
<td>O₂, 37°C</td>
</tr>
</tbody>
</table>

i) Examine the sub-cultured plates daily and record findings in the LIS Media Comment field.

ii) If there is no growth after 7 days, forward the original culture plate to the Public Health Laboratory (PHL) for further work-up.

iii) When sufficient growth is noted, record:

 Macroscopic Examination:
 a) Colonial morphology
 b) Surface pigment
 c) Reverse pigment
 d) Growth on cycloheximide containing agar

 Microscopic Examination:
 a) Prepare LPAB preparation(s) from subculture plates as required depending on colonial morphology on each plate and examine under light microscope as outlined above.
 b) If there is growth without conidia production and growth on SAB 37°C plate, send the isolate to PHL for further work-up.
 c) If there is growth without conidia production and no growth on SAB 37°C plate, determine the significance of the isolate by taking into consideration the following:
- Direct smear result
- Pathology report if available
- Clinical data
- Growth on cycloheximide containing media
- Growth at 37°C
- Refer to the Identification Flow Charts.

See the Senior Technologist or Microbiologist for consultation if needed. Send the isolate to PHL for further work-up if needed.

d) If the isolate cannot be identified by slide culture, send the isolate to PHL for further work-up.

e) If there is growth with conidia and the isolate cannot be identified, set up a slide culture (see Appendix VI - Slide Culture). If the isolate cannot be identified by slide culture, send the isolate to PHL for further work-up.

B) YEAST

If yeast is isolated from fungal media, check the bacteriology culture results. If yeast has already been identified in bacteriology, do not repeat the identification, but simply refer to the bacteriology result.

If yeast is isolated from fungal media and not in bacteriology media, identify yeast as follows:

1) Sterile sites and biopsy specimens:
 a) Germ tube: **Positive** - Report as "Candida albicans" “isolated”.
 b) Germ tube: **Negative** - Set up: Cornmeal Agar at 28°C
 SAB at 28°C
 API 20C at 28°C

2) Respiratory sites isolates:
 Check Bacteriology culture media to determine the amount of commensal flora. Then determine the significance and work-up of the yeast grown on fungal media as follows:
 Significant growth – For sputum (≥2+ growth OR 1+ growth and predominant and if pus cells are seen on gram stain) OR for bronchoscopy specimen (amount greater than that of commensal flora):
 a) Germ tube: **Positive** - Report as "Candida albicans"
b) Germ tube: **Negative** - Rule out Cryptococcus using Urease test. If Urease is negative, report as "Yeast, not *Candida albicans* or Cryptococcus". If Urease is positive, confirm purity and set up: BA at 37°C
 - Cornmeal Agar at 28°C
 - SAB at 28°C
 - API 20C at 28°C
 - EBM at 28°C (if it was not on original EBM)

Insignificant growth – i.e. any amount of yeast other than what has defined as significant growth.

Rule out Cryptococcus using Urease test. If Urease is negative, report as part of Commensal flora **without** specifically mentioning the presence of yeast. If Urease is positive, confirm purity and set up: BA at 37°C
 - Cornmeal Agar at 28°C
 - SAB at 28°C
 - API 20C at 28°C
 - EBM at 28°C (if it was not on original EBM)

3) **Voided urines, superficial sites, wounds and drainage fluids:**
 - No Germ tube performed. Report as “Yeast” with quantitation. No further work-up is required.

4) **Isolates from all other sites:**
 a) Germ tube: **Positive** - Report as "*Candida albicans*".
 b) Germ tube: **Negative** - Report as "Yeast, not *Candida albicans*".

If yeast is referred to Mycology from bacteriology media (i.e. Germ tube – positive), identify yeast as follows:

1) **Sterile sites and biopsy specimens:**
 - Set up: Cornmeal Agar at 28°C
 - SAB at 28°C
 - API 20C at 28°C

2) **Respiratory sites isolates (Germ tube – Positive and Urease – Positive):**
 - Set up: BA at 37°C
 - Cornmeal Agar at 28°C
 - SAB at 28°C
 - API 20C at 28°C
 - Urease at 28°C (repeat)

Refer to Yeast Identification Flow Chart for Identification.
The acceptance of API 20 C is >90% and must agree with cornmeal result. Refer unidentifiable isolates to the PHL for further work-up.

C) NOCARDIA

Nocardia species are aerobic members of the actinomycetes which are gram positive branching filamentous bacilli that fragment into rod-shaped to coccoid elements. Most clinical infections are due to *N. asteroides* and *N. brasiliensis*. Most specimens from patients with suspected Nocardiosis will be respiratory specimens (e.g. sputum, BAL, lung biopsy, etc.) although tissue (e.g. Mycetoma) and body fluid may also be submitted. For identification, proceed as follows:

1. When Nocardia isolation is requested or organisms suggestive of Norcardia are seen on gram stain, plant specimen onto Sodium Pyruvate Agar (PYRA) and incubate in O₂, 28°C for 4 weeks in Mycology. As well, the Blood Agar (BA) and Chocolate (CHOC) plates should be kept in bacteriology and incubated in O₂, 35°C for 48 hours and then send it to Mycology for the rest of the 4 weeks. Send plates to mycology for further work up. See Table 1 for nocardia work up.

Table 1. Differentiation of Nocardia, Streptomyces, Atypical Mycobacteria based on colonial and microscopic features.

<table>
<thead>
<tr>
<th></th>
<th>Nocardia Species</th>
<th>Streptomyces species</th>
<th>Atypical Mycobacteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram Stain</td>
<td>GPB*</td>
<td>GPB</td>
<td>GPB</td>
</tr>
<tr>
<td>Modified Kinyoun stain</td>
<td>Partially Acid-fast</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Regular Kinyoun stain</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Morphology</td>
<td>Filamentous, Branching</td>
<td>Filamentous, Branching</td>
<td>Bacillary</td>
</tr>
<tr>
<td>MacConkey (without Crystal Violet)</td>
<td>No Growth</td>
<td>-</td>
<td>Growth</td>
</tr>
<tr>
<td>Strong musty smell</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Adherence to agar</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Report as:</td>
<td>Phrase 1</td>
<td>Phrase 2</td>
<td>Phrase 3</td>
</tr>
</tbody>
</table>

GPB = Gram positive bacilli
REPORTING

1. FUNGAL STAIN:

Negative Reports: "No Fungal elements seen".

NB: In LIS, status these reports as final. No verification required.

Positive Reports: as per keypad options:
- Yeast seen (with quantitation)
- Yeast with pseudohyphae seen (with quantitation)
- Filamentous fungus seen (without quantitation); with morphologic description of organisms/structures seen (e.g. septate hyphae). Define structures.
 If unable to interpret fungal elements, consult Senior Mycology Technologist.

NB: In LIS, status these reports as final. Positive smears with rare and unusual structures (fungal elements) must be checked by Senior Mycology Technologist.

2. CULTURE:

Negative Reports: "No Fungus isolated".

NB: In LIS, status these reports as final. No verification required.

Positive Reports:

- When reporting a fungus culture result, DO NOT quantitate filamentous fungi.
- If fungus has already been identified and reported under bacteriology result, then enter one of the following phrases as appropriate in the Test Comment Field:
 a) "Please see Culture and Sensitivity report for fungus isolate(s)". (Use this phrase when no additional fungi are isolated on the fungal media).
 b) "Please see Culture and Sensitivity report for additional fungus isolate(s)". (Use this phrase when additional fungi are isolated on the fungal media)
Add the appropriate phrases:
 a) "(Organism name)"
 b) "(Organism name); normally non-pathogenic".
 c) "(Organism name or description); cannot rule out contamination".
 d) "Non-sporulating fungus, normally non-pathogenic".
 e) "Filamentous fungus; further identification to follow".
 f) "(Organism name); Confirmation to follow".

NB: In the LIS, status the report as interim (^L).

- For organisms **isolated in fungal media only:**

 Yeast:
 All sites except sterile sites and BAL, report yeast with quantitation
 For sputum,
 Significant growth: *Candida albicans*
 “(Organism name)”
 Cryptococcus neoformans
 Insignificant growth: “Yeast isolate; normally commensal flora”

 Filamentous Fungi:
 If the filamentous fungus is deemed to be **significant**, and when the work-up and identification of the isolate is complete, use one of the following phrases as appropriate:
 a) "(Organism name)"
 b) "(Organism name); normally non-pathogenic".
 c) "(Organism name or description); cannot rule out contamination".
 d) “Non-sporulating fungus, normally non-pathogenic”.
 e) "Filamentous fungus; further identification to follow".
 f) "(Organism name); Confirmation to follow".

 NB: In LIS, status the report as interim (if further incubation required) or final (if no further incubation required).

 If the filamentous fungus is deemed to be **insignificant**:
 “(Organism name); likely not significant”.

- When a fungus isolate has been forwarded to the Public Health Laboratory (or other reference laboratory) for further identification or confirmation, use one of the following phrases as appropriate:
 a) "Filamentous fungus; further identification to follow".
 b) "(Organism name); Confirmation to follow".
NB: In LIS, status the report as interim (^L).

When reporting a fungus culture result, please note the following:

When the Public Health Laboratory (PHL) report becomes available, proceed as follows:

i) Replace the isolate name or description in the **Isolate Field** with the PHL result.

ii) In the **Isolate Comment Field**, remove the statement "Further identification to follow" or "Confirmation to follow" and enter the following phrase (from the keypad) and add the PHL report number: "Public Health Laboratory Report No.__________".

iii) Status the report as final (^F).

Nocardia

a) "*Nocardia* species; further identification to follow".

b) "Branching Gram positive bacilli; further identification to follow".

c) "*Mycobacterium* species isolated."

d) Forward isolates to the Public Health Laboratory (PHL) for further identification.
ACID-FAST STAIN FOR NOCARDIA (MODIFIED KINYOUN)

Principle

Nocardia species possess the unique characteristic of resisting decolorization with acid alcohol.

Reagents

1. Carbol-fuchsin
 - Basic fuchsin solution (3 g basic fuchsin in 100 mL 95% ethyl alcohol) 10 mL
 - Phenol 5% aqueous 90 mL

2. Decolourizer (1% sulfuric acid)
 - H₂SO₄ (concentrated) 1 mL
 - Distilled water 99 mL

3. Methylene blue
 - Methylene blue 0.3 g
 - Distilled water 100 mL

Staining Procedure

1. Fix the smear by gentle heating.
2. Flood the smear with Carbol fuchsin solution.
3. Allow the slide to stand for 5 minutes.
4. Wash the smear with tap water.
5. Decolorize the smear with 1% sulfuric acid until no more colour appears in the washing (approx. 1 min.).
6. Rinse with tap water.
7. Counterstain with methylene blue for approximately 1 minute.
8. Rinse with tap water and air dry.
Interpretation

The filaments of Nocardia species and Rhodococcus appear red-stained against a blue background.

Quality Control

A positive control slide of Nocardia species is stained simultaneously with the clinical specimens.

References

CALCOFLUOR WHITE STAIN

Purpose

Calcofluor White stain is useful for staining skin scrapings, hair, nail and thick tissue specimens. Calcofluor staining requires the addition of KOH which helps to dissolve keratinized particles and helps to emulsify solid, viscous material that may mask the fungal elements. Calcofluor method is **NOT** suitable for the detection of *Pneumocystis carinii*. Calcofluor stained smears are read under the UV microscope as for the Fungi-Fluor™ stain.

Procedure

1. Place a portion of the specimen on the slide (select a purulent area if secretions).
2. Add 1 to 2 drops KOH and emulsify specimen. If it does not clear rapidly, place slide in petri dish and allow to stand about 10 minutes.
3. If tissue or scrapings, place the slide on 35°C bench top heating block for 15-20 minutes to speed clearing.
4. Add 1 or 2 drops of calcofluor white reagent and mix thoroughly. Calcofluor white may be added right after KOH.
5. Apply coverslip gently. Make sure specimen does not overflow.
6. Examine under fluorescent microscope (see Fungi-Fluor™ stain).
7. Always include a control slide positive for yeast or filamentous fungus.

NB: In the event when no Fungal Stain smear is available, Gram smear may be retrieved for over staining by Calcofluor White or KOH.

Interpretation

Fungal cell walls fluoresce apple green (see Fungi-Fluor™ stain).
References

1. Manufacturers' Instructions:
 Calcofluor White Reagent - Difco.

Fungi-Fluor™ Stain

Purpose

The Fungi-Fluor™ stain is used for the rapid identification of various fungal elements in fresh or frozen clinical specimens.

Principle

The active, colourless, fluorescing dye in the staining solution is Cellufluor which is the disodium salt of 4,4’-bis[4-anilino-6-bis-(2-hydroxyethyl) amino-s-triazin-2-ylamino]-2,2’-stilbenedisulfonic acid. Fungi-Fluor™ staining solution is a 0.05% solution of this dye in deionized water with potassium hydroxide added as a clearing agent. The Fungi-Fluor™ counterstaining solution B is an aqueous solution of Evans Blue dye used to reduce background fluorescence. Cellufluor binds nonspecifically to beta-linked polysaccharides found in chitin and cellulose which are present in fungal cell walls.

When exposed to long wave UV light, fungal cell walls will fluoresce.

NB: Collagen, elastin, cotton fibres, plant material, some cells, cell inclusions and parasite cyst forms (eg. Acanthamoeba) may fluoresce.

Materials

Staining Solution A
Counterstaining Solution B
Absolute alcohol
Water
Fluorescent Microscope (Leitz Ortholux with G filter module exciting filter BP 350-460, suppression filter LP515 or equivalent)

Precautions

1. Store in a dark or opaque bottle, tightly sealed, at room temperature.

2. Avoid eye or skin contact: use gloves and protective glasses.
Procedure

1. Prepare smear of specimen and allow to air dry.

2. Fix on the rack with absolute methanol for 5 minutes until dry. Fixed smears can be held indefinitely until ready to stain and examine.

3. Add a few drops of Fungi-Fluor solution A (Cellufluor) for 1 minute.

4. Rinse gently with tap water.

5. Apply coverslip to wetted slide and examine with the fluorescent microscope using the designated filter. If there is a delay, add fresh distilled water to the coverslip just prior to examination.

6. Optional for thicker smears. Add few drops of the counterstain Fungi-Fluor solution B. Rinse gently with tap water and then proceed as in step 5 above.

NB: Gram stained smears can be overstained with Fungi-Fluor after removing immersion oil with alcohol. Similarly, Fung-Fluor stained slides may be overstained with other stains such as GMS, PAS, Geimsa, etc.

Quality Control

Stain a smear of *Candida albicans* daily.

Interpretation

Use 25x or 40x objective.

Fungal cell walls will fluoresce apple-green. Observe for characteristic morphology to differentiate from artifacts and background. When the counterstain is used, fungi will appear yellow-green against a red-orange background.

Appearance of other structures / organisms:

i) Fungal elements - intense peripheral staining with characteristic morphology.

ii) *Pneumocystis carinii* - fainter staining cyst wall (5-7 µm diameter) and intensely staining internal "been-shaped" or "double-parenthesis-like" structures with apposed sides flattened.
iii) *Acanthamoeba* sp. cysts - intensely staining double wall with wrinkled outer wall (10-25 µm diameter)

References

1. Manufacturers' Instructions (Data Sheet #316). Fungi-Fluor™ kit - Polysciences, Inc., July 1995

Gomori Methenamine Silver (GMS), Periodic Acid Schiff (PAS) and Fontana Masson Fungal Stains

Purpose:

These are special fungal stains, usually ordered by the Microbiologist when further identification of fungi is required.

1. Fix smears in absolute methanol for 5 minutes.
2. Fill out yellow Histopathology requisition form.
3. Label slides with specimen number, name of stain and "Micro".
4. Send to Histopathology for staining.
5. Stained slides will be returned to the Mycology section for interpretation. These must be reviewed by a senior technologist in mycology or by the microbiologist.
INDIA INK

Purpose

The procedure is applicable only to suspected positive Cryptococcal cultures.

Procedure

1. For suspected Cryptococcal cultures, make a wet preparation using saline on a clean glass slide, then add a small drop of India Ink and mix.

2. Apply a large coverslip ((22 x 40 mm) over the mixture and press it gently to obtain a thin mount.

3. If India Ink is too thick (dark), dilute it by 50% with saline.

4. Allow the preparation to stand for few minutes to settle.

5. Scan under low power in reduced light. Switch to high power if necessary.

Interpretation

The mucoid capsule appears as a clear halo that surrounds the yeast cell or lies between the cell wall and the surrounding black mass of India Ink particles. Capsules may be broad or narrow. The yeast cells may be round, oval or elongate. Buds may be absent, single or rarely multiple and may be detached from the mother cell but enclosed in a common capsule attached.

Reference

India Ink positive for Cryptococcus

Artefacts produced by reaction of India Ink (False Positive)
LACTOPHENOL ANILINE BLUE (LPAB)

Purpose

To determine the morphology of the conidiogenous cells and the conidia that they give rise to in order to identify a filamentous fungus.

Principle

LPAB contains lactic acid as a clearing agent, phenol as a disinfectant, glycerol to prevent drying and Aniline Blue which is the dye that stains fungi. LPAB is a wet preparation.

Procedure

1) **TEASE PREP**

The test must be performed in the Laminar Airflow Biosafety Cabinet. First, observe the gross morphology of the colony carefully to determine whether or not the culture is mouldy, granular or a mixture of both. It is important to prepare the LPAB preparation by "teasing" the fungus not "chopping" it.

Materials required for LPAB staining:

1. LPAB reagent
2. Probe to get the specimen
3. Teasing needles
4. Glass slides
5. Coverslips
6. Lead or wax pencils
7. Disinfectant bucket
8. Electric incinerator
9. Clear nail polish
10. Slide tray
Tease Prep Procedure:

1. Sterilize the loop and the needles in the incinerator and allow them to cool.

2. Label slide, place 2 drops of LPAB reagent on the slide.

3. Cut a small piece of the fungus from a granular or colored part of the colony, somewhere away from the central part towards the periphery and place the piece of the fungus in the LPAB in the upside down position.

4. Hold the thallus with the needle and gently tease the inverted side of the specimen into the staining (LPAB) fluid.

5. After enough teasing, remove all the solid particles and the agar from the mixture and discard in the disinfectant container.

6. Put a coverslip gently onto the LPAB preparation and hold the slide preparation briefly over the incinerator opening. Heating the slide will help to stain the cell wall of the fungi and kill the spores on the surface of the slide.

7. Seal the preparation with nail polish if necessary for a permanent mount.

8. Examine under the light microscope using the low power objective.

2) SCOTCH TAPE PREP FROM PLATE CULTURE
(Not done on suspected dimorphic fungi)

1. Place a drop of LPAB onto a clean glass slide.
2. Take a small piece of clear scotch tape and loop back on itself with sticky sides out.
3. Hold the tip of the loop securely with forceps.
4. Press the sticky side firmly to the surface of the fungal colony.
5. Pull the tape gently away from the colony.
6. Open up the tape strip and place it on the drop of LPAB on the glass slide, making sure that the entire sticky side adheres to the slide.
7. Examine under the light microscope.
Reference

ISOLATOR 10 BLOOD CULTURE SYSTEM FOR DIMORPHIC FUNGI

I. Introduction

The Isolator 10 blood culture system should be used for the isolation and detection of dimorphic fungi such as Histoplasma and Blastomyces.

If BacT/Alert bottles are received with a request for dimorphic fungi, notify the ward/ordering physician that they must use the Isolator 10 collection tubes. The BacT/Alert bottles should only be processed as per routine blood cultures.

II. Collection and Transport

Using aseptic technique, collect 10 ml of blood into a clean, sterile syringe. Transfer the blood into an Isolator 10 microbial tube. Transport to the laboratory immediately for processing. If a delay in transport or processing is anticipated, the tubes can be held for 24 hours at room temperature.

III. Reagents / Materials / Media

Refer to Appendix I.

IV. Procedure

A. Processing of Isolator 10 Microbial Tubes:

1. Centrifuge specimen at 4000 rpm for 30 minutes.

2. Disinfect the stopper using 10% PVP iodine or tincture of iodine. Allow to dry completely.

3. Place cap over stopper. Grasp only the sides of the cap.

4. Position cap under press and pull down handle and release.

5. Collapse bulb of supernatant pipette completely before inserting stem into the tube.
6. Insert stem into tube and release bulb to withdraw supernatant fluid. Discard the supernatant.
 NB: The use of a safety hood is mandatory for steps 6 to 9.

7. Vortex the tube for at least 10 seconds at the highest setting.

8. Collapse bulb of concentrate pipette completely and then insert stem into tube. Slowly withdraw all concentrate.

9. Dispense concentrate in a straight line along the surface of the agar. Keep inoculum away from the edge of the plate.

<table>
<thead>
<tr>
<th>Media</th>
<th>Incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhibitory Mold Agar (IMA)</td>
<td>x 4 weeks</td>
</tr>
<tr>
<td>Esculin Base Medium (EBM)</td>
<td>x 4 weeks</td>
</tr>
<tr>
<td>Blood Egg Albumin Agar (BEAA)</td>
<td>x 4 weeks</td>
</tr>
<tr>
<td>Blood Egg Albumin Agar (BEAA)</td>
<td>x 4 weeks</td>
</tr>
</tbody>
</table>

10. Using the tip of the pipette, streak the plates. Use 15-20 passes perpendicular to the original inoculum line.

11. Forward plates to Mycology for incubation and processing.

B. Interpretation of Fungal Culture Plates:

Refer to Mycology Manual.

V. Reporting Results

Refer to Mycology Manual.

VI. Reference

1. Isolator 10 Product Insert.
REFERENCES

www.doctorfungus.com
APPENDIX I

CONVERSION (Converting Mycelial Phase of Dimorphic Mould to a Yeast Phase)

I. Purpose

To be used only for suspected *Sporothrix schenckii* and *Blastomyces dermatitidis*. Send all other suspected dimorphic fungi to the Public Health Laboratory for identification and/or confirmation.

II. Procedure

1. Transfer a large inoculum of the filamentous culture onto the surface of a fresh, moist slant of Brain Heart Infusion Agar (BHIA). If the slant is dry, add 0.5 ml sterile distilled water before inoculation.

2. Incubate culture at 37°C.

3. Examine daily for the presence of yeat-like, creamy colonies.

 NB: It is not necessary for the whole culture to convert. *S. schenckii* usually converts rapidly to the yeast phase without the need for further 37°C subcultures.

4. Confirm the presence of any yeast forms by LPAB tease prep (Refer to Lactophenol Analine Blue (LPAB) procedure in the Staining Methods).

III. Reference

APPENDIX II

CORNMEAL TWEEN-80/OXGALL AGAR

I. Purpose

To be used for yeast morphology when the germ tube is negative, but further identification is required as outlined in the section: Isolation and Identification. Cornmeal Tween-80 provides excellent diagnostic morphological features for yeast identification, but produces chlamydospores more slowly than oxgall agar.

II. Procedure

A. Cornmeal Tween 80:

1. Using a sterile wire loop, inoculate a small portion of a yeast colony by making two parallel streaks a few mm apart on the surface of a cornmeal agar plate. Do not cut into the agar.

2. Streak over the lines in a "zigzag" fashion (Dolmau technique).

3. Place a clean coverslip over the streaked area and press gently.

4. Include controls T. glabrata (negative) and C. parapsilosis (positive).

5. Incubate at 25-28°C for 48 hours.

6. Using the light microscope examine under low power and high dry objectives for the presence of hyphae, pseudohyphae, blastoconidia, chlamydospore and/ or arthroconidia. The plate may need to be reincubated if the morphology is not fully developed (eg. arthroconidia formation).
B. Oxgall:

Oxgall agar is specifically used to show chlamydospores. Oxgall does not always give the classic diagnostic morphology of yeast as is seen with the Cornmeal Tween-80 agar.

1. Using a sterile spade shaped spatula, inoculate lightly by making 2 to 3 parallel cuts approximately 1/2 inch apart at 45\(^{\circ}\) angle. Avoid cutting the agar through to the bottom.

2. Apply a clean coverslip on the inoculated area and press gently.

3. Include controls *C. albicans* (positive) and *C. tropicalis* (negative).

4. Incubate at 28\(^{\circ}\)C for up to 48 hours.

5. Examine the areas where the agar is cut under low and high dry objectives using the light microscope.

6. Observe for the presence of hyphae, pseudohyphae, blastoconidia, chlamydospores and arthroconidia.

7. Refer to Table 1. "Identification of yeast" in the section, Isolation and Identification for interpretation.

 Note: Yeast producing chlamydospores on cornmeal and/or oxgall are reported as *Candida albicans*. Yeast not producing chlamydospores or pseudohyphae may require further testing.

III. References

APPENDIX III

DETERMINING CYCLOHEXIMIDE RESISTANCE OF AN ISOLATE

I. Purpose

To rule out or help confirm the presence of a possible dimorphic fungus or dermatophyte. Normally used in the identification of white moulds.

The following pathogenic fungi are resistant to Cycloheximide:

- Blastomyces dermatitidis
- Histoplasma capsulatum
- Coccidioides immitis
- Sporothrix schenckii
- Paracoccidioides brasiensis
- Trichophyton sp.
- Microsporum sp.
- Epidermophyton floccosum

Cycloheximide inhibition rules out the above fungi. Resistance to cycloheximide may indicate one of the above pathogens.

II. Procedure

1. Subculture the isolate to Potato Dextrose Agar (PDA) and Mycosel Agar (MYC) and incubate at 28°C (or RT). MYC contains cycloheximide.

2. Observe periodically for 7-10 days or until good growth on one or both media.

III. Interpretation

i) PDA+/ MYC + : Fungus MAY be one of the above listed pathogens.

ii) PDA +/ MYC - : Fungus is NOT one of the ABOVE listed pathogens.
iii) PDA -/ MYC - : Test invalid, repeat.

NB: *Penicillium marneffei* (dimorphic fungus) is inhibited by cycloheximide.

IV. Reference

APPENDIX IV

FLUORESCENT MICROSCOPE (INSTRUCTIONS)

1. Record date and time in UV Record Book when turning on the fluorescent microscope.

 Note: If UV light is recently turned off, WAIT FOR ONE HOUR before turning it on again.

2. Switch on the microscope

3. Allow the microscope to warm up for 5 minutes.

4. Turn filter setting to 2 (G filter) (Leitz Ortholux Microscope) -- (right side of Grey structure above objectives. Use filter #3 for bright-field microscopy).

5. Pull out the small black ring (rod) on the left side above the revolving nose piece to let UV light pass through the objective; push it in to prevent the slide from fading when not examining the preparation.

6. When finished, turn off the "ON" button.

7. Enter the time and calculate the total time used in the UV Record Book.

8. Fluorescent bulbs are good for a maximum of 200 hours. Notify the senior technologist that the bulb should be changed when the maximum time has been reached.
APPENDIX V

GERM TUBE TEST

I. Introduction

This is a rapid test for the presumptive identification of *C. albicans*.

II. Reagents / Materials / Media

Bovine serum - A small volume to be used as a working solution may be stored at 2 to 8°C. Stock solution can be dispensed into small tubes and stored at -20°C.

- Clean glass microscope slides
- Glass coverslips
- Glass tubes (13 x 100 mm)
- Pasteur pipettes

III. Procedure

1. Put 3 drops of serum into a small glass tube.

2. Using a Pasteur pipette, touch a colony of yeast and gently emulsify it in the serum. The pipette can be left in the tube.

3. Incubate at 35°C to 37°C for up to 3 hours but no longer.

4. Transfer a drop of the serum to a slide for examination.

5. Coverslip and examine microscopically using x 40 objective.

IV. Interpretation

Germ tubes are appendages half the width and 3 to 4 times the length of the yeast cell from which they arise. There is no constriction between the yeast cell and the germination tube.

Positive test: presence of short lateral filaments (germ tubes) one piece structure

Negative test: yeast cells only (or with pseudohyphae) always two pieces
Positive Germ Tube Negative Germ Tube
(Parallel sides; Non-septate) (Constriction at point of attachment)

Note: *C. tropicalis* may form pseudohyphae (usually after 3 hours incubation) which may be falsely interpreted as germ tube positive.

IV. Quality Control

Set up known controls daily:

C. albicans: positive
C. tropicalis: negative

V. References

APPENDIX VI

SLIDE CULTURE

I. Purpose

A slide culture is used to preserve and observe the natural state and the actual structure showing conidiogenous cells and conidia of the fungus.

Before setting up a slide culture, it is important to do an LPAB preparation and demonstrate that the organism is susceptible to Cycloheximide (Exception: Dermatophytes and Sporothrix schenckii).

Note: NEVER SET UP A SLIDE CULTURE ON A SUSPECTED COCCIDIOIDES, BLASTOMYCES, PENICILLIUM marneffi AND HISTOPLASMA CULTURE OR ANY WHITE MOULD THAT GROWS WELL ON MYCOSEL.

II. Procedure

1. Place a sterile filter paper in a small petri dish.

2. Add some sterile distilled water.

3. Place 2 pieces of wooden sticks on the filter paper, a few centimetres apart.

4. Place a clean alcohol flamed heat sterilised glass slide on the sticks.

5. Using a sterile spatula, cut a small square (about 1 x 1 cm) of agar block from the Potato Dextrose Agar (PDA) (or 3% Salt Agar) and place it on the centre of the slide.

6. Using a needle or spatula, inoculate the agar with a small amount of fungus under test on each of the four sides of the block.

7. Place a heat-sterilized coverslip over the block and press down gently.
8. Incubate at 28°C or room temperature.

10. When good growth appears, place a drop of LPAB on a clean slide, remove the coverslip using forceps, pass the top side of the coverslip in front of the incinerator opening to fix and place it over the LPAB on the slide.

11. Examine under the light microscope. If the preparation shows sufficiently developed structures, prepare the second preparation from the slide by removing the agar block from the slide. Discard the agar in the sharps container. Place a drop of LPAB on the slide and a new coverslip on it. Both preparations can be preserved indefinitely by sealing the edges with nail polish.

12. If the fungus is still underdeveloped, add a fresh coverslip on the agar block, reseal the plate with parafilm and continue incubation.

III. Reference

Setting up Slide Culture

Wooden sticks
(underneath glass slide)

Moistened filter paper
(bottom of Petri dish)

Petri Dish

Coverslip
(on top of agar block)

Inoculum
(on 4 sides of agar block)

Glass slide

Agar block
(on glass slide)
APPENDIX VII

STOCK CULTURES - WATER CULTURE TECHNIQUE

I. Purpose

To maintain stock cultures of fungi.

II. Procedure

1. Rub a sterile moistened swab over the surface of an actively sporulating fungal colony (or, using a spatula, scrape off the mycelial growth of the fungus above the agar).

2. Wash the swab (or spatula) off into a screw cap bijou bottle containing approximately 4 ml of sterile distilled water.

3. Tighten the cap and store at room temperature.

4. Add sterile distilled water periodically to prevent evaporation.

5. Subculture at least once a year to maintain viability of the stock cultures. Twirling the culture to resuspend the conidia, subculture using a sterile pipette.

6. Record stock cultures in the appropriate stock book in Mycology with the date the stock was made.

III. Reference

APPENDIX VIII

I. **Principle**

The API 20C AUX strip consists of 20 microtubes containing dehydrated substrates in which 19 assimilation tests are performed. After inoculation and incubation, the reactions are interpreted by comparison to growth controls and use of the Identification Table provided with each kit.

II. **Material**

- API 20C AUX Strip
- Incubation tray
- C Medium
- Pasteur pipettes (or Plastic pipettes)
- Suspension medium
- RAT medium

III. **Procedure**

1. Create a humid atmosphere within an incubation tray by distributing 5 ml of distilled water into the bottom of the tray.
2. Use a cotton swab to suspend a portion of the yeast colony in the suspension medium equal to a 2 McFarland standard.
3. Place 1 drop of yeast suspension into RAT Medium.
4. Transfer 100 µl (3 drops) of RAT Medium suspension into an ampoule of C medium.
5. Using a pasteur pipette, fill the capsules with the suspension in C medium.
6. Put lid on and incubate at 28°C x 48-72 hours.
7. After 24, 48 (and 72 hrs if needed) check for growth.
8. Record results onto the supplied report form and compare results with the Identification Table to identify yeast.
9. Record results in the LIS.
IV. Quality Control

Control strains are set up for each new lot number of strips.

Use the following isolates:
1. *C. albicans* ATCC 14053
2. *C. guilliermondii* ATCC 6260
3. *C. pseudotropicalis* ATCC 4135

V. References

1. API 20C AUX package insert #20210.
APPENDIX IX

MEDIA / REAGENTS

1. **BLOOD EGG ALBUMIN AGAR (BEAA)**

 Commercially prepared by Bio-Media lab

 Columbia agar base
 5% sheep blood agar
 Egg Albumin
 Avidin
 Gentamicin
 Vancomycin

 Purpose: Primary isolation media for fungi especially *Histoplasma capsulatum*.

 Quality Control

<table>
<thead>
<tr>
<th>Fungus</th>
<th>Incubation Temperature</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trichophyton mentagrophytes</td>
<td>28°C</td>
<td>Good growth</td>
</tr>
<tr>
<td>Candida albicans</td>
<td>28°C</td>
<td>Inhibited</td>
</tr>
</tbody>
</table>
2. BRAIN HEART INFUSION AGAR (BHIA)

Brain Heart Infusion Agar Powder
Dist. H₂O

Mix and boil to dissolve completely.
Distribute 10 ml. into 25-ml. UGB bottles.
Autoclave 15 minutes at 15 psi and 121°C.
Cool on a slant.
Store at room temperature.
Final pH approximately 7.4

Purpose: Isolation of opportunistic and dimorphic fungi from uncontaminated specimens.

Also to convert some dimorphic fungi from the mycelial phase to the yeast phase when incubated at 37°C with extra moisture added to the tube.
MEDIA / REAGENTS

3. CORNMEAL TWEEN 80 AGAR (OXOID)

<table>
<thead>
<tr>
<th>Cornmeal</th>
<th>40 gm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agar</td>
<td>20 gm</td>
</tr>
<tr>
<td>Tween 80 (polysorbate 80)</td>
<td>10 ml</td>
</tr>
<tr>
<td>Distilled water</td>
<td>1,000 ml</td>
</tr>
</tbody>
</table>

1. Mix cornmeal well with 500 ml of water; heat to 65°C for 1 hour.
2. Filter through gauze and then paper until clear. Restore to original volume.
3. Adjust to pH 6.6-6.8.
4. Add agar dissolved in 500 ml of sterile water.
5. Add Tween 80.
6. Autoclave for 15 minutes.
7. Dispense into sterile screw cap bottles (175 mls) to be melted and poured into petri dishes (15 ml/dish) as needed.

Purpose: For yeast morphology.

Reference

4. ESCULIN BASE MEDIUM (EBM) pH 7.1

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dist. H₂O</td>
<td>1000 ml</td>
</tr>
<tr>
<td>Bacto Agar (Difco)</td>
<td>15 g</td>
</tr>
<tr>
<td>Dextrose (BBL)</td>
<td>5 g</td>
</tr>
<tr>
<td>Bacto-Peptone (Difco)</td>
<td>10 g</td>
</tr>
<tr>
<td>Esculin (Difco/BDH)</td>
<td>0.5 g</td>
</tr>
<tr>
<td>Difco Yeast Extract</td>
<td>1.0 g</td>
</tr>
</tbody>
</table>

Mix thoroughly to dissolve. Autoclave at 121°C/ 15 minutes.

Cool to 45°-50°C, aseptically remove 5.0-ml. agar, then add:

2.5 ml. Gentamicin sulphate = 25,000 µg/litre
2.5 ml. Chloramphenicol = 10,000 µg/litre

Mix well and pour plates.
Store in fridge.

Gentamicin Sulphate Stock Solution (10,000 µg/ml)

Vial contains 2.0 ml. (40 mg/ml) = 80,000 µg

Transfer contents of vial and make up to a volume of 8 ml. using phosphate buffer pH 8.0 (= 10,000 µg/ml). Distribute 3 ml. amounts into bijou bottles. Store at -20°C.

Chloramphenicol Stock Solution (4,000 µg/ml)
Purpose

Differential medium for isolation of Cryptococcus neoformans and also isolation medium for other fungi from contaminated specimens. Also provides presumptive identification of *C. neoformans*.

Principle

C. neoformans produces phenol oxidase enzyme that breaks down the substrate esculin, resulting in the production of a melanin-like pigment and the development of dark brown colonies. It takes about 48-72 hours for colonies to become brown. Other yeast colonies are cream to beige.

Rare strains of *C. neoformans* fail to produce pigmented colonies; also rarely yeasts other than *C. neoformans* produce dark colonies.

Quality Control

<table>
<thead>
<tr>
<th>Organisms</th>
<th>Incubation Temperature</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptococcus neoformans</td>
<td>28°C</td>
<td>Brown pigment</td>
</tr>
<tr>
<td>C. laurentii (or T. glabrata)</td>
<td>28°C</td>
<td>No brown pigment</td>
</tr>
</tbody>
</table>

References

MEDIA / REAGENTS

5. INHIBITORY MOLD AGAR (IMA)

- **Tryptone**: 3.0 g.
- **Beef extract**: 2.0 g.
- **Yeast extract**: 5.0 g.
- **Dextrose**: 5.0 g.
- **Starch (soluble)**: 2.0 g.
- **Dextrin**: 1.0 g.
- **Chloramphenicol**: 0.125 g.
- **Salt A**: 10.0 ml.
- **Salt C**: 20.0 ml.
- **Agar**: 17.0 g.
- **Distilled water**: 970.0 ml.

Salt A:
- **NaH₂PO₄**: 25.0 g.
- **Na₂HPO₄**: 25.0 g.
- **NaH₂PO₄H₂O**: 28.71 g.
- **H₂O**: 250.0 ml.

Salt C:
- **MgSO₄ - 7H₂O**: 10.0 g.
- **FeSO₄ - 7H₂O**: 0.5 g.
- **NaCl**: 0.5 g.
- **MnSO₄ - 7H₂O**: 2.0 g.
- **H₂O**: 250.0 ml.

Manufacturer: Que-lab Inc. Dehydrated medium.

Materials are dissolved in water that is brought to a boil to suspend the agar. After cooling, pH is adjusted to 6.7. Autoclave 15 psi/15 minutes. Chloramphenicol is first dissolved in 2 ml of alcohol (95%) and added to boiling media. Pour into sterile, plastic petri dishes (35 ml/plate). For isolation and subculture of fungi.
Quality Control

<table>
<thead>
<tr>
<th>Fungus</th>
<th>Incubation Temperature</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trichophyton mentagrophytes</td>
<td>28°C</td>
<td>Good growth</td>
</tr>
</tbody>
</table>
MEDIA / REAGENTS

6. **LACTOPHENOL ANILINE BLUE STAIN (LPAB)**

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distilled water</td>
<td>20.0 ml.</td>
</tr>
<tr>
<td>Lactic acid</td>
<td>20.0 ml.</td>
</tr>
<tr>
<td>Phenol crystals</td>
<td>20.0 g.</td>
</tr>
<tr>
<td>Aniline blue</td>
<td>0.05 g.</td>
</tr>
<tr>
<td>Glycerol</td>
<td>40.0 ml.</td>
</tr>
</tbody>
</table>

Dissolve phenol in the lactic acid, glycerol, and water by gently heating. Then add aniline blue.

Purpose: Used for wet mount preparations of fungal cultures.
MEDIA / REAGENTS

7. **MYCOSEL AGAR**

Purpose

a) to isolate pathogenic fungi (especially dermatophytes) from contaminated specimens (it inhibits bacteria and most saprophytic fungi).

b) to determine Cycloheximide resistance of fresh isolates as a screening test for pathogenic fungi.

Formula per litre

Dehydrated Mycosel Agar 36 g.
Distilled Water 1000 ml.

Mix thoroughly. Heat with frequent agitation until medium boils, not longer.
Dispense 10 ml. amounts into 25-ml UGB bottles. Autoclave 15 min/ 118°C.
Cool on a slant. Store at room temperature. Final pH 6.9 ± 0.2.

Note: This medium must not be incubated at 35°C since the antibiotics at the higher temperature inhibit pathogenic fungi.

Quality Control

<table>
<thead>
<tr>
<th>Fungi</th>
<th>Incubation Temperature</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trichophyton rubrum</td>
<td>28°C</td>
<td>Good growth</td>
</tr>
<tr>
<td>Aspergillus flavus</td>
<td>28°C</td>
<td>No growth</td>
</tr>
</tbody>
</table>
MEDIA / REAGENTS

8. OXGALL AGAR

Purpose

For the rapid production of chlamydospore by *Candida albicans* within 24 to 48 hours.

- Bacto oxgall powder 20 (10) g. (Difco 0128-02)
- Bacto agar powder 18 (15) g. (Difco 0140-01)
- Dist. H₂O 1000 ml.

Mix well. Final pH 7.3 ± 0.2.
Autoclave 121°C/15 minutes.
Cool to 50°C.
Pour plates.

Quality Control

<table>
<thead>
<tr>
<th>Fungi</th>
<th>Incubation Temperature</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candida albicans</td>
<td>28°C</td>
<td>Chlamydospore production</td>
</tr>
<tr>
<td>Candida tropicalis</td>
<td>28°C</td>
<td>No chlamydospore</td>
</tr>
</tbody>
</table>

Reference

MEDIA / REAGENTS

9. POTATO DEXTROSE AGAR (PDA)

Purpose

Sporulation medium for fungi (can also be used in slide culture).

Slopes:

Potato dextrose agar (CM 139) \[39 \text{ g.} \]
Distilled Water \[1000 \text{ ml.} \]

Mix well, bring to a boil to dissolve. Cool to 50°C (check pH with ATC - pH ± 5.6). Dispense 10 ml amounts into pre-sterilised UGB bottles. Autoclave (with loose caps) at $118^\circ\text{C}/10$ minutes. Cool in a slanted position. Tighten the caps. Label the bottles "PDA". Store at 4°C.

Plates:

Potato dextrose agar \[39.0 \text{ g.} \]
Dist. H$_2$O \[1000.0 \text{ ml.} \]

Mix well, bring to a boil. Cool to 50°C (check pH with ATC - pH ± 5.6). Autoclave at $121^\circ\text{C}/15$ minutes. Cool. Pour plates (label "PDA"). Shrink wrap plates individually. Store at 4°C.
MEDIA / REAGENTS

10. SODIUM PYRUVATE AGAR (NPA) FOR NOCARDIA

Distilled Water 500 ml.
Sodium Pyruvate (Pyruvic acid. Sodium salt) 2.5 g.
 SIGMA - P2256
Yeast Extract 0.25 g.
Indicator (1.6 g bromocresol purple in
 100 ml of 95% ethanol) 0.50 ml.

Mix well, pH to 6.8. Then add:

Agar (BACTO) 10 g.

Mix thoroughly, heat to dissolve. Sterilize 121°C/15 min. Cool, pour plates. Store in
refrigerator. (Final pH 6.8)

Purpose

Isolation medium for Nocardia from contaminated specimens. Growth of other bacteria
is usually suppressed.

References

madurae. CMAJ 119:911-914
MEDIA / REAGENTS

11. SABOURAUD AGAR MODIFIED (DIFCO)

Purpose

To provide a better and less inhibitory medium than the original formula for isolation and subculture of fungi.

Principle

The modified Sabouraud contains 2% rather than 4% dextrose and has a near neutral pH i.e. 7.0 as compared to 5.6. Other antibiotic containing media can now replace the very low pH in the original formula for suppressing bacterial contaminants.

Sabouraud Agar (Modified) 50 g.
Distilled Water 1000 ml.

Mix well pH 7.5

Heat to boiling to dissolve.

For slopes: Dispense 10 ml. amounts into UGB bottles. Autoclave 121°C/15 minutes. Slope. Store at RT. Final pH 7.0 at 25°C.

For plates: Autoclave flask 121°C/15 min. Cool. Pour plates. Store in plastic bags at 4°C.

Formula per litre

Bacto-neopeptone 10 g.
Bacto-Dextrose 20 g.
Bacto-Agar 20 g.
12. **SABOURAUD GENTAMICIN (50 mg/L) AGAR SLOPES**

Purpose

To isolate fungi especially yeast from contaminated specimens.

Sabouraud Agar (Difco-modified-0747-01) 50 g.
Dist. H₂O 1000 ml.

Mix well, bring to a boil to dissolve. Cool to 50°C (check pH with ATC - pH ± 7.0). Add 1.25 ml Gentamicin (1 vial = 80 mgm/2 ml). Mix well. Dispense 10-ml amounts into pre-sterilised UGB bottles. Autoclave 118°C/10 minutes. Cool in a slanted position. Tighten the caps. Label the bottles "SAB G". Store at 4°C.
13. **UREA AGAR SLOPES**

Urea agar base* (Gibco M52600)
29 g.

Distilled Water
100 ml.

Sterilize by filtration.

Agar
15 g.

Distilled Water
900 ml.

Autoclave at 121°C for 15 minutes.

Cool to 50°C. Then add filtered urea agar base solution. Mix thoroughly and dispense 2.5 ml amounts aseptically into sterile disposable tubes (13 x 100) with white caps. Allow medium to cool in slanted position so that a deep butt is formed.

*Urea agar base is kept in the refrigerator.
14. **10% POTASSIUM HYDROXIDE**

Potassium hydroxide (KOH) 10g
Glycerol 20ml
Distilled Water 80 ml

Dissolve the potassium hydroxide in distilled water, then add glycerol. Mix well. Filter sterilize. Store in sterile amber bottle. Keep for 3 months.

Purpose

To digest or clear organic material e.g. tissue cells in a specimen in order to allow fungal structures to be more easily demonstrated.

Principle

Fungi are unaffected by KOH. **Glycerol** prolongs shelf-life by preventing crystallization and preserves the slides for a few days.