WOUNDS /TISSUES / ASPIRATES / MISCELLANEOUS CULTURE MANUAL

TABLE OF CONTENTS

SWABS AND DRAINAGE SPECIMENS ... 3
Intraoperative/Interventional Swabs ... 3
Wound/Abscess Swabs and Drainage .. 7
Bite Wound Swabs ... 12
Intravenous & Central Line Catheter Exit Site Swabs ... 15

ABSCESS SPECIMENS (not Swabs) ... 17
Intraoperative/Interventional Abscess (Pus, Cyst Fluid or Aspirate) 17
Pus & Abscess Material (other than Intraoperative/Interventional, Rectal or Bartholin) 21
Rectal Abscess .. 25
Bartholin's Abscess Swab/Aspirate ... 27

TISSUES, PROSTHETIC DEVICES, AND AUTOPSY SPECIMENS 30
Tissues/Biopsies (other than skin or transplant tissues) .. 30
Skin Biopsies .. 34
Transplant Specimens - Bone Graft & Cadaver Fascia/Tissue/ Swab Specimens/Donor Amniotic Fluid/Membrane; Donor Corneal Ring Material .. 37
Prosthetic Devices (e.g. Pacemaker Wire, Dacron Graft, Prosthetic Valve) 40
Autopsy Specimens ... 43

CATHETER .. 45
Intravascular Catheter Tips .. 45
Peritoneal Dialysis Catheter/Canula .. 48

NOTE: This document is Uncontrolled When Printed.
Any documents appearing in paper form that do not state "CONTROLLED COPY " in red print are not controlled and should be checked against the document (titled as above) on the server prior to use.
Department of Microbiology
Policy Manual
Policy # MI_MISC
Version: 1.1 CURRENT
Page 1 of 75
Section: Bacteriology Procedures
Prepared by QA Committee
Issued by: Laboratory Manager
Approved by Laboratory Director: Microbiologist-in-Chief
Revision Date: 9/14/2018
Next Review Date: 5/1/2019

Uncontrolled When Printed
BILE SPECIMENS

Bile and Bile Stents

MISCELLANEOUS FLUID SPECIMENS

Breast Milk
Total Parenteral Nutrition (TPN)

EAR SPECIMENS

Ear Swab
Tympanocentesis Fluid

EYE SPECIMENS

Eye / Conjunctival / Lid Swabs
Eye / Corneal Scrapings
Intraocular Aspirates
Lacrimal (Tear Duct) Stone / Secretions

FACIAL SPECIMENS

Facial Swabs

Record of Edited Revisions
SWABS AND DRAINAGE SPECIMENS

Intraoperative/Interventional Swabs

I. Introduction

All intraoperative and interventional swab cultures may yield bacteria and fungi. Both aerobic and anaerobic bacteria may be present.

II. Specimen Collection and Transport

See Pre-analytical Procedure - Specimen Collection QPCMI02001.

III. Reagents / Materials / Media

See Analytical Process - Bacteriology Reagents/Materials/Media List QPCMI10001.

IV. Procedure

A. Processing of Specimen:

See Specimen Processing Procedure QPCMI06003

a) Direct Examination: Gram stain – Quantitate the presence of pus cells and organisms.

If fungus is requested, add:
Fungi Fluor stain - Refer to Mycology Manual.
b) Culture:

<table>
<thead>
<tr>
<th>Media</th>
<th>Incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood Agar (BA)(^1), (^2),(^5)</td>
<td>CO(_2), 35(^\circ)C x 48 hours</td>
</tr>
<tr>
<td>MacConkey Agar (MAC)(^1), (^2)</td>
<td>O(_2), 35(^\circ)C x 48 hours</td>
</tr>
<tr>
<td>Chocolate Agar (CHOC)(^1), (^2)</td>
<td>CO(_2), 35(^\circ)C x 48 hours</td>
</tr>
<tr>
<td>Fastidious Anaerobic Broth (THIO)(^1), (^2)</td>
<td>O(_2), 35(^\circ)C x 5 days</td>
</tr>
<tr>
<td>Fastidious Anaerobic Agar (BRUC)(^2)</td>
<td>AnO(_2), 35(^\circ)C x 48 hours</td>
</tr>
<tr>
<td>Kanamycin/Vancomycin Agar (KV)(^2)</td>
<td>AnO(_2), 35(^\circ)C x 48 hours</td>
</tr>
</tbody>
</table>

If fungus is requested, add:

- Inhibitory Mold Agar (IMA)*
 - O\(_2\), 30\(^\circ\)C x 4 weeks

- Esculin Base Medium (EBM)*
 - O\(_2\), 30\(^\circ\)C x 4 weeks

- Brain Heart Infusion Agar with 5% Sheep Blood, Gentamicin, Chloramphenicol, Cyclohexamide (BHIM)*
 - O\(_2\), 30\(^\circ\)C x 4 weeks

1 If organisms were seen in direct Gram stain and cultures yield no corresponding growth after 48 hours of incubation, check direct Gram stain (if discrepant compared to original report, check with the Charge technologist), and re-incubate all aerobic plates and broth for 7 days. If there is no evidence of corresponding growth after 7 days, subculture the THIO to CHOC and BRUC.

2 If both aerobic swab and anaerobic swab are received, use the aerobic swab to inoculate the aerobic plates, use the anaerobic swab to inoculate the anaerobic plates and the Fastidious Anaerobic Broth (THIO).

* Forward fungus culture media to Mycology section for incubation and processing.

B. Interpretation of Cultures:

Examine the aerobic culture plates after 24 and 48 hours incubation and the anaerobic plates after 48 hours incubation. Examine the THIO daily for evidence of growth. If no growth on culture plates but evidence of growth in THIO, then perform Gram stain and subculture THIO onto BA, MAC, CHOC and BRUC (plus additional media as appropriate) and incubate and process as above.

Any growth of *S. aureus*, \(\beta\)-haemolytic streptococci, *Streptococcus anginosus* group, *Pseudomonas aeruginosa* and yeasts are significant; work up. Other organisms will be worked up only if there are \(\leq 3\) different bacterial types. Otherwise (>3 types), simply list the morphotypes.
C. Susceptibility Testing:

Refer to Susceptibility Testing Manual.

V. Reporting Results

a) Gram stain: Report with quantitation the presence of pus cells and organisms.

b) Culture:

 Negative Report: "No growth"

 Positive Report:

 - **Significant isolates** - *S. aureus*, β-haemolytic streptococci, *Streptococcus anginosus* group, *Pseudomonas aeruginosa*, yeasts or other organisms ≤3 different bacterial types - Report all isolates with appropriate susceptibilities.

 - >3 types non-significant isolates – Report as TEST COMMENT – “Mixed growth of …….list morphotypes.”

Telephone results of positive Gram stain or isolates not seen in Gram to the ward / ordering physician.

VI. References

4. Cumitech 23 Infections of the Skin and Subcutaneous Tissues June 1988

Wound/Abscess Swabs and Drainage

I. Introduction

This section includes specimens from wound swabs, abscess swabs, decubitus ulcers, episiotomies, non-intravenous or non-central line exit sites, chest tube drainage, abdominal drainage, and tracheal swabs. Many different bacterial species can cause infection of these sites but are most commonly associated with *S. aureus*, β-hemolytic streptococci, *Streptococcus anginosus* group, *P. aeruginosa* and enteric Gram negative bacilli. The presence of squamous epithelial cells may indicate that the specimen is superficial and therefore the organism isolated may not reflect the true etiology of the infection.

II. Specimen Collection and Transport

See Pre-analytical Procedure - Specimen Collection QPCMI02001

III. Reagents / Materials / Media

See Analytical Process - Bacteriology Reagents/Materials/Media List QPCMI10001.

IV. Procedure

A. Processing of Specimens:

See Specimen Processing Procedure QPCMI06003

a) Direct Examination: Gram stain - Quantitate the presence of pus cells, squamous epithelial cells, and organisms.

b) Culture:

<table>
<thead>
<tr>
<th>Media</th>
<th>Incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood Agar (BA)</td>
<td>CO₂, 35°C x 48 hours</td>
</tr>
<tr>
<td>MacConkey Agar (MAC)</td>
<td>O₂, 35°C x 48 hours</td>
</tr>
<tr>
<td>Colistin Nalidixic Acid Agar (CNA)</td>
<td>O₂, 35°C x 48 hours</td>
</tr>
</tbody>
</table>

For chest tube drainage and tracheal swabs, add:

<table>
<thead>
<tr>
<th>Media</th>
<th>Incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haemophilus Isolation Medium (HI)</td>
<td>CO₂, 35°C x 48 hours</td>
</tr>
</tbody>
</table>

If anaerobic culture is requested, add:

<table>
<thead>
<tr>
<th>Media</th>
<th>Incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haemophilus Isolation Medium (HI)</td>
<td>CO₂, 35°C x 48 hours</td>
</tr>
</tbody>
</table>
B. Interpretation of Cultures:
 1. Examine the aerobic plates after 24 and 48 hours incubation and anaerobic plates after 48 hours incubation.
 2. Count the number of types of organisms.
 a. If there are <3 types in total of organisms isolated, work up significant isolates as follows:
 i. Workup any amount of **Probable Pathogens**
 ii. Workup **Possible Pathogens** if pure growth OR moderate to heavy AND obviously predominant growth.
 iii. Do not workup skin flora.
 b. If there are >3 types in total of organisms isolated, work up significant isolates as follows:
 i. Workup any amount of **Probable Pathogens**
 ii. Do not work up other organisms.

Organisms for workup are categorized as follows:

<table>
<thead>
<tr>
<th>Probable Pathogens</th>
<th>Possible Pathogens</th>
<th>Commensal Skin flora</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus aureus</td>
<td>Enterococcus species</td>
<td>Coagulate-negative-Staphylococcus (except sternal wound)</td>
</tr>
<tr>
<td>β-haemolytic streptococcus</td>
<td>viridans Streptococcus group</td>
<td>Micrococcus species</td>
</tr>
<tr>
<td>Streptococcus anginosus group (except tracheal swabs)</td>
<td>Aerobic gram-negative-bacilli other than P. aeruginosa</td>
<td>Corynebacterium species</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td></td>
<td>Bacillus species not B. anthracis</td>
</tr>
<tr>
<td>For chest tube drainage and tracheal swabs, include:</td>
<td></td>
<td>Propionibacterium species</td>
</tr>
<tr>
<td>Haemophilus influenzae</td>
<td>Yeasts</td>
<td>Nonpathogenic Neisseria species</td>
</tr>
<tr>
<td>Streptococcus pneumoniae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For sternal wounds, include:</td>
<td>An aerobes</td>
<td></td>
</tr>
<tr>
<td>Any amount of Probable and Possible Pathogens and</td>
<td>Staphylococcus lugdunensis</td>
<td></td>
</tr>
<tr>
<td>Coagulase-negative-Staphylococcus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterococcus species</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For organisms not listed, consult the charge technologist.

UNIVERSITY HEALTH NETWORK/MOUNT SINAI HOSPITAL, DEPARTMENT OF MICROBIOLOGY

NOTE: This document is Uncontrolled When Printed.
Any documents appearing in paper form that do not state "CONTROLLED COPY" in red print are not controlled and should be checked against the document (titled as above) on the server prior to use.
C. Susceptibility Testing:

Refer to Susceptibility Testing Manual.

V. Reporting Results

a) Gram stain: Report with quantitation the presence of pus cells, squamous epithelial cells and organisms.

b) Culture:

 Negative report: “No growth”
 “Commensal flora”
 “Mixed growth of ……list morphotypes.”

 Positive report: Quantitate all significant isolates; report with appropriate susceptibility results. If other organisms are also present, report as “Commensal flora” with quantitation.

NB: If anaerobic culture requested and no anaerobic swab received, report the following phrase with both the negative and positive reports (enter under the TEST field in the LIS):
"No anaerobic swab received; anaerobic culture not done”.

VI. References

6. Cumitech 5A Practical anaerobic bacteriology December 1991
Bite Wound Swabs

I. Introduction

Bite wounds may become infected with many different organisms but most commonly include *S. aureus*, *Pasteurella* spp., *S. anginosus* group and beta-hemolytic streptococci. The presence of squamous epithelial cells may indicate that the specimen is superficial and therefore the organisms isolated may not reflect the true etiology of the infection.

II. Specimen Collection and Transport

See Pre-analytical Procedure - Specimen Collection QPCMI02001

III. Reagents / Materials / Media

See Analytical Process - Bacteriology Reagents/Materials/Media List QPCMI10001

IV. Procedure

A. Processing of Specimens:

See Specimen Processing Procedure QPCMI06003

a) Direct Examination: Gram stain – Quantitate the presence of pus cells, squamous epithelial cells, and organisms.

b) Culture:

<table>
<thead>
<tr>
<th>Media</th>
<th>Incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood Agar (BA)</td>
<td>CO₂, 35°C x 48 hours</td>
</tr>
<tr>
<td>MacConkey Agar (MAC)</td>
<td>O₂, 35°C x 48 hours</td>
</tr>
<tr>
<td>Chocolate Agar (CHOC)</td>
<td>CO₂, 35°C x 48 hours</td>
</tr>
</tbody>
</table>

If anaerobic culture requested, add:

<table>
<thead>
<tr>
<th>Media</th>
<th>Incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fastidious Anaerobic Agar (BRUC)</td>
<td>AnO₂, 35°C x 48 hours</td>
</tr>
<tr>
<td>Kanamycin / Vancomycin Agar (KV)</td>
<td>AnO₂, 35°C x 48 hours</td>
</tr>
</tbody>
</table>
B. Interpretation of Cultures:

Examine aerobic plates after 24 and 48 hours incubation and anaerobic plates after 48 hours incubation.

Any growth of *S. aureus*, *Pasteurella* spp., *Streptococcus anginosus* group, beta-haemolytic streptococci and *Pseudomonas aeruginosa* is significant. For other organisms such as Enterobacteriaceae and other Gram negative bacilli, a significant result is determined by the isolation of a moderate to heavy predominant growth.

For suspected anaerobes, minimal identification is required.

C. Susceptibility Testing:

Refer to [Susceptibility Testing Manual](#).

V. Reporting Results

a) Gram stain: Report with quantitation the presence of pus cells, squamous epithelial cells and organisms.

b) Culture:

Negative Report: "No growth" or "Commensal flora"

Positive Report: Quantitate all significant isolates with appropriate susceptibilities. If commensal flora is also present, report with quantitation.

NB: If anaerobic culture requested and no anaerobic swab received, report the following phrase with both the negative and positive reports (enter under the TEST field in the LIS): "No anaerobic swab received; anaerobic culture not done".
VI. References

6. Cumitech 5A Practical anaerobic bacteriology December 1991
Intravenous & Central Line Catheter Exit Site Swabs

I. Introduction

The intravenous or central line catheter exit site may become infected with a variety of organisms which may lead to tunnel infections or bacteraemia.

II. Specimen Collection and Transport

See Pre-analytical Procedure - Specimen Collection QPCMI02001

III. Reagents / Materials / Media

See Analytical Process - Bacteriology Reagents/Materials/Media List QPCMI10001

IV. Procedure

A. Processing of Specimen:

See Specimen Processing Procedure QPCMI06003

a) Direct Examination: Not indicated.

b) Culture:

<table>
<thead>
<tr>
<th>Media</th>
<th>Incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood Agar (BA)</td>
<td>CO₂, 35°C x 48 hours</td>
</tr>
<tr>
<td>MacConkey Agar (MAC)</td>
<td>O₂, 35°C x 48 hours</td>
</tr>
</tbody>
</table>

B. Interpretation of Cultures:

Examine the culture plates after 24 and 48 hours incubation. Quantitate and identify any growth of *S. aureus*, *Streptococcus anginosus* group, *Pseudomonas* species, yeast and beta-haemolytic streptococci. Quantitate and identify any pure or predominant growth of other Gram negative bacilli and enterococci. A heavy, pure growth of any other organism is significant.
C. Susceptibility Testing:

Refer to Susceptibility Testing Manual.

V. Reporting Results

Negative report: "No growth" or "Commensal flora"

Positive report: Quantitate all significant isolates with appropriate susceptibilities. If commensal flora is also present, report with quantitation.

VI. References

ABSCESSES SPECIMENS

Intraoperative/Interventional Abscess (Pus, Cyst Fluid or Aspirate)

I. **Introduction**

All intraoperative and interventional abscess cultures may yield bacteria and fungi. Both aerobic and anaerobic bacteria may be present.

II. **Specimen Collection and Transport**

See Pre-analytical Procedure - Specimen Collection QPCMI02001

III. **Reagents / Materials / Media**

See Analytical Process - Bacteriology Reagents/Materials/Media List QPCMI10001

IV. **Procedure**

A. Processing of Specimen:

See Specimen Processing Procedure QPCMI06003

a) Direct Examination: Gram stain – Quantitate the presence of pus cells and organisms.

 If fungus is requested, **add**:
 Fungi Fluor stain - Refer to Mycology Manual.

b) Culture:

<table>
<thead>
<tr>
<th>Media</th>
<th>Incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood Agar (BA)</td>
<td>CO₂, 35°C x 48 hours</td>
</tr>
<tr>
<td>MacConkey Agar (MAC)</td>
<td>O₂, 35°C x 48 hours</td>
</tr>
<tr>
<td>Chocolate Agar (CHOC)</td>
<td>CO₂, 35°C x 48 hours</td>
</tr>
<tr>
<td>Fastidious Anaerobic Agar (BRUC)</td>
<td>AnO₂, 35°C x 48 hours</td>
</tr>
</tbody>
</table>
Bacteriology Procedures

Subject Title: Miscellaneous Culture Manual

Kanamycin/Vancomycin Agar (KV)
Fastidious Anaerobic Broth (THIO)\(^1\)

If fungus is requested, **add:**
Inhibitory Mold Agar (IMA)*
Esculin Base Medium (EBM)*
Brain Heart Infusion Agar with 5% Sheep Blood, Gentamicin, Chloramphenicol, Cyclohexamide (BHIM)*

\(^1\) If organisms were seen in direct Gram stain and cultures yield no corresponding growth after 48 hours of incubation, check direct Gram stain (if discrepant compared to original report, check with the Charge technologist), and re-incubate all aerobic plates and broth for 7 days. If there is no evidence of corresponding growth after 7 days, subculture the THIO to CHOC and BRUC.

* Forward fungus culture media to Mycology section for incubation and processing.

B. Interpretation of Cultures:

Examine the aerobic culture plates after 24 and 48 hours incubation and the anaerobic plates after 48 hours incubation. Examine the THIO daily for evidence of growth. If no growth on culture plates but evidence of growth in THIO, then perform Gram stain and subculture THIO onto BA, MAC, CHOC and BRUC (plus additional media as appropriate) and incubate and process as above.

Any growth of *S. aureus*, β-haemolytic streptococci, *Streptococcus anginosus* group, *Pseudomonas aeruginosa* and yeasts are significant; work up. Other organisms will be worked up only if there are <3 different bacterial types. Otherwise (>3 types), simply list the morphotypes.

C. Susceptibility Testing:

Refer to [Susceptibility Testing Manual](#).

V. Reporting Results

a) Gram stain: Report with quantitation the presence of pus cells and organisms.
b) Culture:

Negative Report: "No growth"

Positive Report:

- **Significant isolates** - S. aureus, β-haemolytic streptococci, Streptococcus anginosus group, Pseudomonas aeruginosa, yeasts or other organisms ≤3 different bacterial types - Report all isolates with appropriate susceptibilities.

- >3 types non-significant isolates – Report as TEST COMMENT – “Mixed growth of ……list morphotypes”.

Telephone results of positive Gram stain and isolates to the ward / ordering physician.

VI. References

4. Cumitech 23 Infections of the Skin and Subcutaneous Tissues June 1988

8. Cumitech 5A Practical anaerobic bacteriology December 1991
Pus & Abscess Material (other than Intraoperative/Interventional, Rectal or Bartholin)

I. Introduction

Abscesses are usually due to a mixture of different aerobic and anaerobic bacteria depending on the location of the abscess.

II. Specimen Collection and Transport

See Pre-analytical Procedure - Specimen Collection QPCMI02001

III. Reagents / Materials / Media

See Analytical Process - Bacteriology Reagents/Materials/Media List QPCMI10001

IV. Procedure

A. Processing of Specimens:

See Specimen Processing Procedure QPCMI06003

a) Direct Examination:
 - Gram stain – Quantitate the presence of pus cells and organisms.
 - Kinyoun and Modified Kinyoun stain - If Actinomyces or Nocardia is suggested on Gram stain.
 - Fungi Fluor stain - If fungus is requested. (Refer to Mycology Manual).
b) Culture:

<table>
<thead>
<tr>
<th>Media</th>
<th>Incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood Agar (BA)¹</td>
<td>CO₂, 35°C x 48 hours</td>
</tr>
<tr>
<td>MacConkey Agar (MAC)</td>
<td>O₂, 35°C x 48 hours</td>
</tr>
<tr>
<td>Chocolate Agar (CHOC)¹</td>
<td>CO₂, 35°C x 48 hours</td>
</tr>
<tr>
<td>Fastidious Anaerobic Agar (BRUC)²</td>
<td>AnO₂, 35°C x 48 hours</td>
</tr>
<tr>
<td>Kanamycin/Vancomycin Agar (KV)²</td>
<td>AnO₂, 35°C x 48 hours</td>
</tr>
</tbody>
</table>

If Nocardia is requested, **add:**
Pyruvate Agar (PYRU)* O₂, 35°C x 4 weeks
AND fungus media below

If fungus culture is requested, **add:**
Inhibitory Mold Agar (IMA)* O₂, 30°C x 4 weeks
Brain Heart Infusion Agar with 5% Sheep
Blood, Gentamicin, Chloramphenicol, Cyclohexamide (BHIM)* O₂, 30°C x 4 weeks

*Forward the fungus culture media and PYRU to the Mycology section for incubation and work-up.

NOTE:
1. If Nocardia is requested, send the BA and CHOC plates to mycology after 48 hours incubation. The plates will be incubated in mycology for 4 weeks.
2. If Actinomycetes is requested, set up a second set of anaerobic media to be incubated for 10 days before opening jar.
3. If Nocardia or Actinomycetes is suggested on Gram stain, set up a Pyruvate plate and second set of anaerobic media to be incubated for 10 days before opening jar and send BA and CHOC plates to Mycology after 48 hours incubation.

B. Interpretation of Cultures:

Examine the aerobic culture plates after 24 and 48 hours incubation and the anaerobic plates after 48 hours and the second set of anaerobic media after 10 days of incubation (if Actinomycetes requested or suggested on Gram stain).
Any growth of *S. aureus*, β-haemolytic streptococci, *Streptococcus anginosus* group, *Pseudomonas aeruginosa* and yeasts are significant; work up. Other organisms will be worked up only if there are ≤3 different bacterial types. Otherwise (>3 types), simply list the morphotypes.
C. Susceptibility Testing:

Refer to Susceptibility Testing Manual.

V. Reporting Results

a) Gram stain: Report with quantitation the presence of pus cells and organisms.

b) Culture:
 - Negative report: "No growth"
 - If Actinomyces is requested, report: "No Actinomyces isolated after 10 days incubation"
 - If Nocardia is requested, report: “No Nocardia isolated”.
 - Positive report:
 - Significant isolates - S. aureus, β-haemolytic streptococci, Streptococcus anginosus group, Pseudomonas aeruginosa, yeasts or other organisms ≤3 different bacterial types - Report all isolates with appropriate susceptibilities.
 - >3 types non-significant isolates – Report as TEST COMMENT – “Mixed growth of …….list morphotypes”.

VI. References

Section: Bacteriology Procedures

Subject Title: Miscellaneous Culture Manual

6. Cumitech 5A Practical anaerobic bacteriology December 1991
Rectal Abscess

I. Introduction

Rectal abscesses may contain a variety of organisms usually from the gastrointestinal flora. Both aerobic and anaerobic bacteria may be present.

II. Specimen Collection and Transport

See Pre-analytical Procedure - Specimen Collection QPCMI02001

III. Reagents / Materials / Media

See Analytical Process - Bacteriology Reagents/Materials/Media List QPCMI10001.

IV. Procedure

A. Processing of Specimen:

See Specimen Processing Procedure QPCMI06003

a) Direct Examination: Gram stain – Quantitate the presence of pus cells and organisms.

b) Culture:

<table>
<thead>
<tr>
<th>Media</th>
<th>Incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood Agar (BA)</td>
<td>CO₂, 35°C x 48 hours</td>
</tr>
<tr>
<td>MacConkey Agar (MAC)</td>
<td>O₂, 35°C x 48 hours</td>
</tr>
<tr>
<td>Colistin Nalidixic Acid Agar (CNA)</td>
<td>O₂, 35°C x 48 hours</td>
</tr>
</tbody>
</table>
B. Interpretation of Cultures:

Examine the culture plates after 24 and 48 hours incubation. Work up any growth of *S. aureus*, beta-haemolytic Streptococci, *S. anginosus* group or *Pseudomonas aeruginosa*. Ignore organisms that are usually part of the faecal flora (i.e. Gram negative bacilli). For non-lactose fermenters (NLF), screen for *Salmonella* species and *Shigella* species.

C. Susceptibility Testing:

Refer to [Susceptibility Testing Manual](#).

V. Reporting Results

a) Gram stain: Report with quantitation the presence of pus cells and organisms.

b) Culture:

 Negative Report: "No growth" or "Mixed faecal flora"

 Positive Report: Quantitate all significant isolates with appropriate susceptibilities. Report "Mixed faecal flora" if also present.

VI. References

Bartholinitis may be caused by *Neisseria gonorrhoeae* (GC), *Chlamydia trachomatis* (CT), or organisms normally present in the vagina resulting in a polymicrobial infection.

II. **Specimen Collection and Transport**

See [Pre-analytical Procedure - Specimen Collection QPCMI02001](#)

III. **Reagents and Media**

See [Analytical Process - Bacteriology Reagents/Materials/Media List QPCMI10001](#)

IV. **Procedure**

A. Processing of Specimens:

See [Specimen Processing Procedure QPCMI06003](#)

a) Direct Examination: Gram stain. - Quantitate the presence of pus cells, squamous epithelial cells, and organisms.

b) Culture:

<table>
<thead>
<tr>
<th>Media</th>
<th>Incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood Agar (BA)</td>
<td>CO₂, 35°C x 48 hours</td>
</tr>
<tr>
<td>Chocolate Agar (CHOC)</td>
<td>CO₂, 35°C x 48 hours</td>
</tr>
<tr>
<td>Martin–Lewis Agar (ML)</td>
<td>CO₂, 35°C x 72 hours</td>
</tr>
<tr>
<td>MacConkey Agar (MAC)</td>
<td>O₂, 35°C x 48 hours</td>
</tr>
</tbody>
</table>

If anaerobic culture is requested, discuss with the Microbiologist or Charge Technologist.
B. Interpretation of cultures:

a) Examine the BA, CHOC, and MAC plates after 24 and 48 hours incubation and the ML plate after 48 and 72 hours incubation. Quantitate the bacterial growth.

b) All potential pathogens should be identified.

Any growth of *S. aureus*, beta-haemolytic Streptococci, *S. anginosus* group, *Pseudomonas aeruginosa* or *Neisseria gonorrhoeae* should be identified. Ignore organisms that are usually part of the faecal flora (i.e. Gram negative bacilli).

If a specific organism is requested, it will be looked for and its presence or absence reported. If anaerobic culture is requested, discuss with the Microbiologist or Charge Technologist.

c) For GC work-up, refer to Bacteria and Yeast Work-Up.

C. Susceptibility testing:

Refer to Susceptibility Testing Manual.

V. Reporting Results

Gram Stain: Report with quantitation the presence of pus cells and organisms.

Culture:

- Negative Report: “No significant growth” or “No growth”
 “No *Neisseria gonorrhoeae* isolated”.

- Positive Report: Quantitate all significant isolates with appropriate susceptibilities. Report "Mixed faecal flora" if also present.
 “*Neisseria gonorrhoeae* isolated (do not quantitate)."
Quantitate and report all other significant isolates with appropriate sensitivity results.

For all positive GC cultures:
1. Telephone floor/ordering Physician
2. Send a Communicable Disease Report to the Medical Officer of Health by the microbiologist or supervisor.

VI. References

5. Cumitech 4A Laboratory Diagnosis of Gonorrhea April 1993

TISSUES, PROSTHETIC DEVICES, AND AUTOPSY SPECIMENS

Tissues/Biopsies (other than skin or transplant tissues)

I. Introduction

Surgical biopsies, tissues should be considered sterile specimens and therefore the isolation of any organism(s) should be considered significant.

EBUS tissue (endobronchial ultrasound guided biopsies of tissue, primarily mediastinal lymph nodes primarily) may contain oral flora as part of the specimen collection process. Isolates consistent of oral flora are not considered as significant from these specimens.

II. Specimen Collection and Transport

See Pre-analytical Procedure - Specimen Collection QPCMI02001

III. Reagents / Materials / Media

See Analytical Process - Bacteriology Reagents/Materials/Media List QPCMI10001

IV. Procedure

A. Processing of Specimen:

See Specimen Processing Procedure QPCMI06003

a) Direct Examination: Gram stain. - Quantitate the presence of pus cells, and organisms.

b) Culture:

Inoculate the following media with the remaining sample:

<table>
<thead>
<tr>
<th>Media</th>
<th>Incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood Agar (BA)</td>
<td>CO₂, 35°C x 48 hours</td>
</tr>
<tr>
<td>MacConkey Agar (MAC)</td>
<td>O₂, 35°C x 48 hours</td>
</tr>
<tr>
<td>Chocolate Agar (CHOC)</td>
<td>CO₂, 35°C x 48 hours</td>
</tr>
<tr>
<td>Fastidious Anaerobic Agar (BRUC)</td>
<td>AnO₂, 35°C x 48 hours</td>
</tr>
</tbody>
</table>
Kanamycin/Vancomycin Agar (KV)
- AnO₂, 35°C x 48 hours

Fastidious Anaerobic Broth (THIO)
- O₂, 35°C x 5 days

If Fungus is requested, add:
- Inhibitory Mold Agar (IMA) *
 - O₂, 30°C x 4 weeks
- Esculin Base Medium (EBM) *
 - O₂, 30°C x 4 weeks
- Brain Heart Infusion Agar with 5% Sheep Blood, Gentamicin, Chloramphenicol, Cyclohexamide (BHIM) *
 - O₂, 30°C x 4 weeks

1 If organisms were seen in direct Gram stain and cultures yield no corresponding growth after 48 hours of incubation, check direct Gram stain (if discrepant compared to original report, check with the Charge technologist), and re-incubate all aerobic plates and broth for 7 days.

If there is no evidence of corresponding growth after 7 days, subculture the THIO to CHOC and BRUC.

* Forward the fungal culture media to the Mycology section for incubation and work-up.

B. Direct Examination:

- a) Gram stain – Quantitate the presence of pus cells and organisms.

C. Interpretation of Cultures:

Examine the aerobic culture plates after 24 and 48 hours incubation and the anaerobic plates after 48 hours incubation. Examine the THIO daily for evidence of growth. If no growth on culture plates but evidence of growth in THIO, then perform Gram stain and subculture THIO onto BA, MAC, CHOC and BRUC (as appropriate) and incubate and process as above.

Any growth of *S. aureus*, β-haemolytic streptococci, *Streptococcus anginosus* group, *Pseudomonas aeruginosa* and yeasts are significant; work up. Other organisms will be worked up only if there are ≤3 different bacterial types. Otherwise (>3 types), simply list the morphotypes.

EBUS tissues: do not work up oral flora isolates.

D. Susceptibility Testing:

Refer to [Susceptibility Testing Manual](#).

NOTE: This document is Uncontrolled When Printed.

Any documents appearing in paper form that do not state “CONTROLLED COPY” in red print are not controlled and should be checked against the document (titled as above) on the server prior to use.

Management System\UHN_Mount Sinai Hospital Microbiology\Standard Operating Procedures\Bacteriology Procedures\
V. Reporting Results

a) Gram stain: Report with quantitation the presence of pus cells and organisms.

b) Culture:
 - Negative Report: "No growth"
 - EBUS tissue: “Mixed growth of oral flora”
 - Positive Report:
 - >3 types non-significant isolates – Report as TEST COMMENT – (Quantitation) Mixed growth of …….list morphotypes.

Telephone results of positive Gram stain or isolates not seen in gram to the ward/ordering physician.

VI. References

3. Cumitech 23 Infections of the Skin and Subcutaneous Tissues June 1988

8. Cumitech 5A Practical anaerobic bacteriology December 1991
Skin Biopsies

I. Introduction

A variety of organisms may be associated with skin lesions and thus any growth of organisms other than skin commensals should be considered significant.

II. Specimen Collection and Transport

See Pre-analytical Procedure - Specimen Collection QPCMI02001

III. Reagents / Materials /Media

See Analytical Process - Bacteriology Reagents/Materials/Media List QPCMI10001.

IV. Procedure

A. Processing of Specimen:

See Specimen Processing Procedure QPCMI06003

a) Direct Examination: Gram stain: Quantitate the presence of pus cells and organisms.

If fungus is requested, add:

Fungi Fluor stain - Refer to Mycology Manual.

b) Culture:

<table>
<thead>
<tr>
<th>Media</th>
<th>Incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood Agar (BA)</td>
<td>CO₂, 35°C x 48 hours</td>
</tr>
<tr>
<td>MacConkey Agar (MAC)</td>
<td>O₂, 35°C x 48 hours</td>
</tr>
<tr>
<td>Chocolate Agar (CHOC)</td>
<td>CO₂, 35°C x 48 hours</td>
</tr>
</tbody>
</table>

If fungus is requested, add:

Inhibitory Mold Agar (IMA)* O₂, 30°C x 4 weeks
Brain Heart Infusion Agar with 5% Sheep Blood, Gentamicin, Chloramphenicol, Cyclohexamide (BHIM)

| O₂ | 30°C x 4 weeks |

* Forward the fungus culture media to the Mycology section for incubation and work-up.

B. Interpretation of Cultures:

Examine the culture plates after 24 and 48 hours incubation. Any growth of organisms other than [Commensal Skin flora](#) should be considered significant.

C. Susceptibility Testing:

Refer to [Susceptibility Testing Manual](#).

V. **Reporting Results**

a) Gram stain: Report with quantitation the presence of pus cells and organisms.

b) Culture:

 Negative Report: "No growth" or "Commensal flora"

 Positive Report: Quantitate all significant isolates with appropriate susceptibilities. If other organisms are also present, report as “Commensal flora” with quantitation.
VI. References

3. Cumitech 23 Infections of the Skin and Subcutaneous Tissues June 1988
Transplant Specimens - Bone Graft & Cadaver Fascia/Tissue/ Swab Specimens/Donor Amniotic Fluid/Membrane; Donor Corneal Ring Material

I. Introduction

Specimens collected for transplantation are usually collected ante-mortem or just prior to transplantation and should normally be sterile. Occasionally, fascia may be used for transplantation in which case a swab or tissue sample may be collected for sterility testing.

II. Specimen Collection and Transport

See Pre-analytical Procedure - Specimen Collection QPCMI02001

III. Reagents / Material / Media

See Analytical Process - Bacteriology Reagents/Materials/Media List QPCMI10001.

IV. Procedure

A. Processing of Specimen:

See Specimen Processing Procedure QPCMI06003

a) Direct Examination: Not indicated

b) Culture:

<table>
<thead>
<tr>
<th>Media</th>
<th>Incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fastidious Anaerobic Broth (THIO)*</td>
<td>O2, 35°C x 7 days</td>
</tr>
</tbody>
</table>

* A separate THIO should be inoculated for each specimen / swab received.
B. Interpretation of Culture:

Examine the THIO daily for evidence of growth. If evidence of growth in THIO, then perform Gram stain and subculture THIO onto BA, MAC, CHOC and BRUC (plus additional media as appropriate) and incubate in CO₂ and anaerobically for the BRUC.

Any growth of *S. aureus*, β-haemolytic streptococci, *Streptococcus anginosus* group, *Pseudomonas aeruginosa* and yeasts are significant; work up. Other organisms will be worked up only if there are ≤3 different bacterial types. Otherwise (>3 types), simply list the morphotypes.

C. Susceptibility Testing:

Refer to Susceptibility Testing Manual.

V. Reporting Results

Negative Report: "No growth after 7 days of incubation".

Positive Report:

- **Significant isolates** - *S. aureus*, β-haemolytic streptococci, *Streptococcus anginosus* group, *Pseudomonas aeruginosa*, yeasts or other organisms ≤3 different bacterial types - Report all isolates with appropriate susceptibilities.
 - For bone and joint fluids specimens, report organisms to the species level. If not identified in lab, send to PHOL.
 - >3 types non-significant isolates – Report as TEST COMMENT – “Mixed growth of ……..list morphotypes”.

VI. References

Prosthetic Devices (e.g. Pacemaker Wire, Dacron Graft, Prosthetic Valve)

I. Introduction

Prosthetic devices e.g. pacemaker wire, Dacron graft. Prosthetic valve removed from patients may be sent for sterility testing. Medical devices which penetrate the skin significantly increase the risk of device related infection. These devices become colonized by bacteria on the patient’s skin or bacteria carried on the hands of medical personnel. Prosthetic devices may also be infected be skin and other bacteria when implanted. These invading bacteria colonize the surface forming a biofilm producing localized infection and may lead to significant infections such as bacteremia and septic thrombosis.

II. Specimen Collection and Transport

See Pre-analytical Procedure - Specimen Collection QPCMI02001

III. Reagents / Materials / Media

See Analytical Process - Bacteriology Reagents/Materials/Media List QPCMI10001.

IV. Processing of Specimens

A. Processing of Specimens

See Specimen Processing Procedure QPCMI06003

 a) Direct Examination: Not indicated.
 b) Culture:

<table>
<thead>
<tr>
<th>Media</th>
<th>Incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fastidious Anaerobic Broth (THIO)</td>
<td>O₂, 35°C x 5 days</td>
</tr>
</tbody>
</table>

B. Interpretation of Culture:

Examine the THIO daily for evidence of growth. If evidence of growth in THIO, then perform Gram stain and subculture THIO onto BA, MAC, CHOC and BRUC (plus additional media as appropriate) and incubate in CO₂ and anaerobically for the BRUC.
Any growth of *S. aureus*, β-haemolytic streptococci, *Streptococcus anginosus* group, *Pseudomonas aeruginosa* and yeasts are significant; work up. Other organisms will be worked up only if there are ≤3 different bacterial types. Otherwise (>3 types), simply list the morphotypes.

C. Susceptibility Testing:

Susceptibility testing is only performed on significant isolates. Refer to [Susceptibility Testing Manual](#).

V. **Reporting Results**

Negative Report: "No growth" or "No significant growth including (list of non-significant organisms)"

Positive Report:

- **Significant isolates** - *S. aureus*, β-haemolytic streptococci, *Streptococcus anginosus* group, *Pseudomonas aeruginosa*, yeasts or other organisms ≤3 different bacterial types - Report all isolates with appropriate susceptibilities.

- >3 types non-significant isolates – Report as TEST COMMENT – “Mixed growth of ……list morphotypes”.

VI. **References**

Autopsy Specimens

I. Introduction

Specimens collected at autopsy are often contaminated with faecal or skin flora. Interpretation of cultures must take into account the presence of commensal flora from different body sites. For blood culture taken from autopsy, see the Blood Culture Manual.

II. Specimen Collection and Transport

See Pre-analytical Procedure - Specimen Collection QPCMI02001

III. Reagents / Materials / Media

See Analytical Process - Bacteriology Reagents/Materials/Media List QPCMI10001.

IV. Procedure

A. Processing of Specimens:

See Specimen Processing Procedure QPCMI06003

a) Direct Examination: Gram stain - Quantitate the presence of pus cells, squamous epithelial cells, and organisms.

b) Culture:

<table>
<thead>
<tr>
<th>Media</th>
<th>Incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood Agar (BA)</td>
<td>CO₂, 35°C x 48 hours</td>
</tr>
<tr>
<td>MacConkey Agar (MAC)</td>
<td>O₂, 35°C x 48 hours</td>
</tr>
<tr>
<td>Chocolate Agar (CHOC)</td>
<td>CO₂, 35°C x 48 hours</td>
</tr>
<tr>
<td>Colistin Nalidixic Acid Agar (CNA)</td>
<td>O₂, 35°C x 48 hours</td>
</tr>
</tbody>
</table>
Bacteriology Procedures

Media

For all lung tissue or if fungal culture is requested, add:

<table>
<thead>
<tr>
<th>Media</th>
<th>Incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhibitory Mold Agar (IMA)*</td>
<td>O₂, 30°C x 3 weeks</td>
</tr>
</tbody>
</table>

* Forward the fungus culture media to the Mycology section for incubation and work-up.

B. Interpretation of Cultures:

Examine plates after 24 and 48 hours incubation. Identify all pure growth of Gram negatives and all significant pathogens.

C. Susceptibility Testing:

Not Required.

V. Reporting Results

a) Gram stain: Report with quantitation the presence of pus cells and organisms.

b) Culture:

Negative Report: "No growth" or "Mixed flora suggesting contamination"

Positive Report: Report all significant isolates without susceptibilities.

VI. References

CATHETER SPECIMENS

Intravascular Catheter Tips

I. Introduction

Intravascular catheters may include central, CVP, Hickman, Broviac, peripheral, arterial, umbilical, hyperalimentation, hemodialysis, port-a-cath and Swan-Ganz catheters.

II. Specimen Collection and Transport

See Pre-analytical Procedure - Specimen Collection QPCMI02001

III. Reagents / Materials/ Media

See Analytical Process - Bacteriology Reagents/Materials/Media List QPCMI10001.

IV. Processing of Specimens

A. Processing of Specimens:

See Specimen Processing Procedure QPCMI06003

a) Direct Examination: Not indicated.

b) Culture:

<table>
<thead>
<tr>
<th>Media</th>
<th>Incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood Agar (BA)</td>
<td>CO₂, 35°C x 48 hours</td>
</tr>
</tbody>
</table>

Roll the segment back and forth 4 times across the surface of the BA using sterile forceps.
B. Interpretation of Culture:

Examine the BA plate after 24 and 48 hours incubation. Any growth of *S. aureus*, β-haemolytic streptococci, *Streptococcus anginosus* group, *Pseudomonas aeruginosa*, other Gram negative bacilli, vancomycin-resistant-Enterococci and yeasts are significant; quantitate and identify. Other organisms should be quantitated and identified only if ≥15 colonies of that organism are present and there are ≤3 different bacterial types. Otherwise (>3 types), simply list the morphotypes with quantitation.

C. Susceptibility Testing:

Susceptibility testing is only performed on significant isolates. Refer to Susceptibility Testing Manual.

V. Reporting Results

Negative Report: "No growth"

For non-significant organisms:
Report as TEST Comment: "<15 colonies of (list morphotypes of non-significant organisms)".
No susceptibility required.

Report as TEST Comment: ">15 colonies of (list morphotypes of mixed non-significant organisms)". No susceptibility required.

Positive Report: For significant organisms:
Report as ISOLATE: "<15 colonies of (organism name)" or "≥15 colonies of (organism name)". Report with appropriate susceptibilities.

For *Staphylococcus aureus*, gram negative bacilli and yeast in any amount, call ward.

VI. References

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Section: Bacteriology Procedures</td>
<td>Subject Title: Miscellaneous Culture Manual</td>
<td></td>
</tr>
</tbody>
</table>

Peritoneal Dialysis Catheter/Canula

I. Introduction

Peritoneal dialysis catheters or canula (PD Canula) removed from patients may be sent for sterility testing.

II. Specimen Collection and Transport

See Pre-analytical Procedure - Specimen Collection QPCMI02001

III. Reagents / Materials / Media

See Analytical Process - Bacteriology Reagents/Materials/Media List QPCMI10001.

IV. Procedure

A. Processing of Specimens

See Specimen Processing Procedure QPCMI06003

a) Direct Examination: Not indicated.

b) Culture:

<table>
<thead>
<tr>
<th>Media</th>
<th>Incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fastidious Anaerobic Broth (THIO)</td>
<td>O₂, 35°C x 5 days</td>
</tr>
</tbody>
</table>

B. Interpretation of Culture:

Any growth of *S. aureus*, β-haemolytic streptococci, *Streptococcus anginosus* group, *Pseudomonas aeruginosa* and yeasts are significant; work up. Other organisms will be worked up only if there are ≤3 different bacterial types. Otherwise (>3 types), simply list the morphotypes.

Examine THIO daily for up to 5 days. If there is evidence of growth, perform Gram stain and subculture THIO onto BA, MAC, CHOC and BRUC (plus other media as appropriate).
C. Susceptibility Testing:

Susceptibility testing is only performed on significant isolates. Refer toSusceptibility Testing Manual.

V. Reporting Results

Negative Report: "No growth"

Positive Report:

- **Significant isolates** - *S. aureus*, β-haemolytic streptococci, *Streptococcus anginosus* group, *Pseudomonas aeruginosa*, yeasts or other organisms ≤3 different bacterial types - Report all isolates with quantitation and appropriate susceptibilities.

- >3 types non-significant isolates – Report as TEST COMMENT – “Mixed growth of …….list morphotypes”

VI. References

BILE SPECIMENS

Bile and Bile Stents

I. Introduction

Bile is a normally sterile fluid. However, it may become contaminated when collected from a post-op drain. Bile may also be collected at the time of percutaneous cholangiography (PTC).

II. Specimen Collection and Transport

See Pre-analytical Procedure - Specimen Collection QPCMI02001

III. Reagents / Material / Media

See Analytical Process - Bacteriology Reagents/Materials/Media List QPCMI10001.

IV. Procedure

A. Processing of Specimens:

See Specimen Processing Procedure QPCMI06003

a) Direct Examination: Gram stain – Examine for the presence of pus cells and organisms.

b) Culture:

<table>
<thead>
<tr>
<th>Media</th>
<th>Incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood Agar (BA)</td>
<td>CO₂, 35°C x 48 hours</td>
</tr>
<tr>
<td>MacConkey Agar (MAC)</td>
<td>O₂, 35°C x 48 hours</td>
</tr>
</tbody>
</table>

If anaerobic culture is requested or bile is collected by PTC, add:

<table>
<thead>
<tr>
<th>Media</th>
<th>Incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fastidious Anaerobic Agar (BRUC)</td>
<td>AnO₂, 35°C x 48 hours</td>
</tr>
<tr>
<td>Kanamycin/Vancomycin Agar (KV)</td>
<td>AnO₂, 35°C x 48 hours</td>
</tr>
<tr>
<td>Fastidious Anaerobic Broth (THIO)</td>
<td>O₂, 35°C x 5 days</td>
</tr>
</tbody>
</table>
B. Interpretation of Cultures:

Examine the aerobic culture plates after 24 and 48 hours incubation and the anaerobic plates after 48 hours incubation. Any growth of *Salmonella* species, *S. aureus*, β-haemolytic streptococci, *Streptococcus anginosus* group, *Pseudomonas aeruginosa* and yeasts are significant; work up. For other organisms, a significant result is determined by the isolation of \(\leq 2 \) organisms. For non-lactose fermenters (NLF), screen for *Salmonella* species.

Examine THIO daily for up to 5 days. If there is evidence of growth in THIO and no growth on plates, perform Gram stain and subculture THIO onto BA, MAC, CHOC and BRUC (plus other media as appropriate).

C. Susceptibility Testing:

Refer to [Susceptibility Testing Manual](#).

V. Reporting Results

a) Gram stain: Report without quantitation the presence of pus cells and organisms.

b) Culture:

 Negatives: "No growth" or "Mixed faecal flora"

 Positives: Report all significant isolates with appropriate susceptibilities, without quantitation. If faecal flora is also present, report without quantitation.

VI. References

6. Cumitech 5A Practical anaerobic bacteriology December 1991
MISCELLANEOUS FLUID SPECIMENS

Breast Milk

I. Introduction

Breast milk may become infected with a variety of organisms and all species should be identified except skin commensals.

II. Specimen Collection and Transport

See Pre-analytical Procedure - Specimen Collection QPCMI02001

III. Reagents / Materials/ Media

See Analytical Process - Bacteriology Reagents/Materials/Media List QPCMI10001.

IV. Procedure

A. Processing of Specimens:

See Specimen Processing Procedure QPCMI06003

a) Direct Examination: Not required

b) Culture:

<table>
<thead>
<tr>
<th>Media</th>
<th>Incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood Agar (BA)</td>
<td>CO₂, 35°C x 48 hours</td>
</tr>
<tr>
<td>MacConkey Agar (MAC)</td>
<td>O₂, 35°C x 48 hours</td>
</tr>
</tbody>
</table>

B. Interpretation of Cultures:

Examine the culture plates after 24 and 48 incubation
Any growth of organisms other than skin commensals should be considered significant.
C. Susceptibility Testing:

Refer to **Susceptibility Testing Manual**.

V. **Reporting Results**

Negative Report: "No growth" or "Commensal flora"

Positive Report: Quantitate all significant isolates with appropriate susceptibilities. If commensal flora is also present, report with quantitation.

VI. **References**

Total Parenteral Nutrition (TPN)

I. Introduction

Total parenteral nutrition fluids are normally sterile.

II. Specimen Collection and Transport

See Pre-analytical Procedure - Specimen Collection QPCMI02001

III. Reagents / Materials / Media

See Analytical Process - Bacteriology Reagents/Materials/Media List QPCMI10001.

IV. Procedure

A. Processing of Specimen:

See Specimen Processing Procedure QPCMI06003

b) Culture:

<table>
<thead>
<tr>
<th>Media</th>
<th>Incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood Agar (BA)</td>
<td>CO₂, 35°C x 48 hours</td>
</tr>
<tr>
<td>Fastidious Anaerobic Broth (THIO)</td>
<td>O₂, 35°C x 5 days</td>
</tr>
<tr>
<td>Inhibitory Mold Agar (IMA)*</td>
<td>O₂, 30°C x 3 weeks</td>
</tr>
<tr>
<td>IMA with sterile olive oil overlay (olive oil is stored in media room)*</td>
<td>O₂, 30°C x 1 week</td>
</tr>
</tbody>
</table>

*Forward these plates to the Mycology section for incubation and work-up.

B. Interpretation of Cultures:

Examine the BA plate after 24 and 48 hours incubation. Examine THIO daily for up to 5 days. If there is evidence of growth, perform Gram stain and subculture THIO onto BA, MAC, CHOC and BRUC (plus other media as appropriate).
Any growth should be considered significant.

Freeze all isolates at -70°C and put into Study “BC” box.

C. Susceptibility Testing:

Refer to Susceptibility Testing Manual.

V. Reporting Result

Culture:

Negative Report: "No growth"

Positive Report: Report all organisms with appropriate susceptibilities. Do not quantitate.

VI. References

EAR SPECIMENS

Ear Swab

I. **Introduction**

Ear swabs are collected for the diagnosis of otitis externa; they are not useful in the diagnosis of otitis media. Otitis externa is a bacterial infection of the external auditory canal usually caused by *Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus pneumoniae,* Group A streptococcus or fungus / yeast.

II. **Specimen Collection and Transport**

See [Pre-analytical Procedure - Specimen Collection QPCMI02001](#).

III. **Reagents / Materials / Media**

See [Analytical Process - Bacteriology Reagents/Materials/Media List QPCMI10001](#).

IV. **Procedure**

A. Processing of Specimens:

See [Specimen Processing Procedure QPCMI06003](#).

a) Direct Examination:

Gram stain – Quantitate the presence of pus cells and organisms.

Fungi Fluor stain (If fungus is requested). - Refer to Mycology Manual.

b) Culture:

<table>
<thead>
<tr>
<th>Media</th>
<th>Incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood Agar (BA)</td>
<td>CO₂, 35°C x 48 hours</td>
</tr>
<tr>
<td>MacConkey Agar (MAC)</td>
<td>O₂, 35°C x 48 hours</td>
</tr>
<tr>
<td>Colistin Nalidixic Acid Agar (CNA)</td>
<td>O₂, 35°C x 48 hours</td>
</tr>
</tbody>
</table>

If fungus culture is requested, **add:**

<table>
<thead>
<tr>
<th>Media</th>
<th>Incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhibitory Mold Agar (IMA)*</td>
<td>O₂, 30°C x 3 weeks</td>
</tr>
</tbody>
</table>

* Forward the fungal culture media to the Mycology section for incubation and work-up.
B. Interpretation of Cultures:

Examine the culture plates after 24 and 48 hours incubation. Any growth of *S. aureus*, *P. aeruginosa*, *S. pneumoniae*, Group A streptococcus or yeast is significant. For specimens from neonates only, identify and report Group B streptococcus. For other organisms, a significant result is determined by the presence of a moderate to heavy growth of an organism which correlates with the predominant organism on the Gram stain. The Gram stain should also show ≥1+ pus cells. Full identification is required for all significant organisms except yeast.

C. Susceptibility Testing:

Refer to [Susceptibility Testing Manual](#).

V. Reporting Results

a) Gram stain: Report with quantitation the presence of pus cells and organisms.

b) Culture:

 - Negative Report: "Commensal flora" or "No growth".
 - Positive Report: Quantitate all significant isolates with appropriate susceptibilities. If commensal flora is also present, report with quantitation.

VI. References

Tympanocentesis Fluid

I. **Introduction**

Tympanocentesis fluid is obtained for the diagnosis of otitis media. These specimens are handled as sterile fluids. (Refer to *Sterile Fluids Culture Manual*)
EYE SPECIMENS

Eye / Conjunctival / Lid Swabs

I. Introduction

Eye / conjunctival / lid swabs are collected for the diagnosis of conjunctivitis.

II. Specimen Collection and Transport

See Pre-analytical Procedure - Specimen Collection QPCMI02001

III. Reagents / Materials / Media

See Analytical Process - Bacteriology Reagents/Materials/Media List QPCMI10001.

IV. Procedure

A. Processing of Specimens:

See Specimen Processing Procedure QPCMI06003

a) Direct Examination: Gram stain – Quantitate the presence of pus cells and organisms.

Note: If pre-inoculated culture plates are received, these should be incubated as listed below. No gram stain will be performed.
b) Culture:

<table>
<thead>
<tr>
<th>Media</th>
<th>Incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood Agar (BA)</td>
<td>CO₂, 35°C x 48 hours</td>
</tr>
<tr>
<td>Chocolate Agar (CHOC)</td>
<td>CO₂, 35°C x 48 hours</td>
</tr>
</tbody>
</table>

For all neonates ≤1 week of age, or if *N. gonorrhoeae* is requested, add:

| Martin-Lewis Agar (ML) | CO₂, 35°C x 72 hours |

B. Interpretation of Cultures:

Examine the BA and CHOC plates after 24 and 48 hours incubation and the ML plate after 48 and 72 hours incubation. Any growth of *S. aureus*, *H. influenzae*, *M. catarrhalis*, *N. gonorrhoeae*, Gp. A Strep, *S. pneumoniae*, *Moraxella* species, and *P. aeruginosa* is potentially significant. For other organisms, a significant result is determined by the isolation of a moderate or heavy growth of a potential pathogen correlated with the predominant organism on the Gram stain. There should be ≥1+ pus cells on the Gram stain. Full identification is required for all significant organisms.

For work-up and identification of *N. gonorrhoeae*, refer to the Bacteria and Yeast Work up Manual.

C. Susceptibility Testing:

Refer to Susceptibility Testing Manual.

V. Reporting Results

a) Gram stain: Report with quantitation the presence of pus cells and organisms.

b) Culture:

Negative Report: "Commensal flora" or "No growth".
If GC culture was set up, report "No *N. gonorrhoeae* isolated"

Positive Report: Quantitate all significant isolates with appropriate susceptibilities. If commensal flora is also present, report with quantitation.
VI. References

Eye / Corneal Scrapings

I. Introduction

Eye / corneal scrapings are collected for the diagnosis of keratitis caused by bacterial, fungal, viral, chlamydial or acanthamoeba infection.

II. Specimen Collection and Transport

See Pre-analytical Procedure - Specimen Collection QPCMI02001

III. Reagents / Materials / Media

See Analytical Process - Bacteriology Reagents/Materials/Media List QPCMI10001.

IV. Procedure

A. Processing of Specimens:

See Specimen Processing Procedure QPCMI06003

a) Direct Examination: Gram stain – Examine for the presence of pus cells and organisms. Fungi Fluor stain (if two smears are provided). Refer to Mycology Manual.

NB: If pre-inoculated plates are received and no smear or additional specimen is received, direct smear stains will not be performed.
b) Culture:

<table>
<thead>
<tr>
<th>Media</th>
<th>Incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood Agar (BA)</td>
<td>CO₂, 35°C x 4 days</td>
</tr>
<tr>
<td>Chocolate Agar (CHOC)</td>
<td>CO₂, 35°C x 4 days</td>
</tr>
<tr>
<td>Fastidious Anaerobic Broth (THIO)</td>
<td>O₂, 35°C x 5 days</td>
</tr>
<tr>
<td>Inhibitory Mold Agar (IMA)*</td>
<td>O₂, 30°C x 3 weeks</td>
</tr>
</tbody>
</table>

*Forward the fungal culture media to the Mycology section for incubation and workup.

B. Interpretation of Cultures:

Examine the culture plates daily. Examine THIO daily for up to 5 days. If there is evidence of growth, perform Gram stain and subculture THIO onto BA, MAC, CHOC and BRUC (plus other media as appropriate).

Any growth of S. aureus, β-haemolytic streptococci, Streptococcus anginosus group, Pseudomonas aeruginosa and yeasts are significant; work up. Other organisms will be worked up only if there are ≤3 different bacterial types. Otherwise (>3 types), simply list the morphotypes.

C. Susceptibility Testing:

Refer to Susceptibility Testing Manual.

V. Reporting Results

For conjunctival scrapings, see Eye / Conjunctival / Lid Swabs.

For corneal scrapings:

a) Gram stain: Report, without quantitation, the presence of pus cells and organisms. Report positive Gram stain as an isolate

NB: If pre-inoculated plates are received and no smear or additional specimen is received. Result in the “TEST” field in the LIS as “No smear received, test not performed.”

b) Culture: Negative report: "No growth."
Positive report:

- **Significant isolates** - *S. aureus*, β-haemolytic streptococci, *Streptococcus anginosus* group, *Pseudomonas aeruginosa*, yeasts or other organisms ≤3 different bacterial types - Report all isolates with appropriate susceptibilities.

- >3 types non-significant isolates – Report as TEST COMMENT – “Mixed growth of ……list morphotypes”.

VI. References

Intraocular Aspirates

I. Introduction

Aspirates of intraocular fluids are submitted for the diagnosis of uveitis and endophthalmitis. These specimens are handled as sterile fluids. (Refer to the Sterile Fluids Culture Manual)

Any requests for specialized procedures should be discussed with a medical microbiologist or the charge technologist before proceeding.
Lacrimal (Tear Duct) Stone / Secretions

I. **Introduction**

Stones may form in the lacrimal duct resulting in obstruction and secondary infection of the lacrimal gland.

II. **Specimen Collection and Transport**

See [Pre-analytical Procedure - Specimen Collection QPCMI02001](#).

III. **Reagents / Materials / Media**

See [Analytical Process - Bacteriology Reagents/Materials/Media List QPCMI10001](#).

IV. **Procedure**

A. Processing of Specimens:

See [Specimen Processing Procedure QPCMI06003](#).

a) Direct examination: Examine for pus cells and organisms especially branching gram positive bacilli resembling *Actinomyces* species.

a) Culture:

<table>
<thead>
<tr>
<th>Media</th>
<th>Incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood Agar (BA)</td>
<td>CO₂, 35°C x 48 hours</td>
</tr>
<tr>
<td>Chocolate Agar (CHOC)</td>
<td>CO₂, 35°C x 48 hours</td>
</tr>
<tr>
<td>Fastidious Anaerobic Agar (BRUC)¹</td>
<td>AnO₂, 35°C x 48 hours</td>
</tr>
<tr>
<td>Kanamycin/Vancomycin Agar (KV)¹</td>
<td>AnO₂, 35°C x 48 hours</td>
</tr>
<tr>
<td>Fastidious Anaerobic Broth (THIO)</td>
<td>O₂, 35°C x 5 days</td>
</tr>
</tbody>
</table>

¹If *Actinomyces* is suggested on direct Gram stain, set up a second set of anaerobic media to be incubated for 10 days before opening jar.
B. Interpretation of Cultures:

Examine the culture plates after 24 and 48 hours incubation. Examine the THIO daily for evidence of growth. If no growth on culture plates but evidence of growth in THIO, then perform Gram stain and subculture THIO onto BA, CHOC and BRUC (as appropriate) and incubate and process as above.

Any growth of S. aureus, β-haemolytic streptococci, Streptococcus anginosus group, Pseudomonas aeruginosa and yeasts are significant; work up. Other organisms will be worked up only if there are ≤3 different bacterial types. Otherwise (>3 types), simply list the morphotypes.

C. Susceptibility Testing:

Refer to Susceptibility Testing Manual.

V. Reporting Results

a) Gram stain: Report presence of organisms.

b) Culture:

 Negative Report: "Commensal flora" or "No growth".

 Positive Report:
 – Significant isolates - S. aureus, β-haemolytic streptococci, Streptococcus anginosus group, Pseudomonas aeruginosa, vancomycin-resistant-Enterococcus, yeasts or other organisms ≤3 different bacterial types - Report all isolates with appropriate susceptibilities.
 – >3 types non-significant isolates – Report as TEST COMMENT – (Quantitation) Mixed growth of …….list morphotypes.

VI. References

7. Cumitech 5A Practical anaerobic bacteriology December 1991
FACIAL SPECIMENS

Facial Swabs

I. Introduction

Infections of the facial structures may be due to a variety of aerobic and anaerobic bacteria usually from the oral cavity. Actinomyces is a particularly important pathogen.

II. Specimen Collection and Transport

See Pre-analytical Procedure - Specimen Collection QPCMI02001

III. Reagents / Materials/ Media

See Analytical Process - Bacteriology Reagents/Materials/Media List QPCMI10001.

IV. Procedure

A. Processing of Specimens:

See Specimen Processing Procedure QPCMI06003

a) Direct Examination: Gram stain – Quantitate the presence of pus cells and organisms. Fungi Fluor stain (If fungus is requested).

b) Culture:

<table>
<thead>
<tr>
<th>Media</th>
<th>Incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood Agar (BA)</td>
<td>CO₂, 35°C x 48 hours</td>
</tr>
<tr>
<td>Chocolate Agar (CHOC)</td>
<td>CO₂, 35°C x 48 hours</td>
</tr>
<tr>
<td>MacConkey Agar (MAC)</td>
<td>O₂, 35°C x 48 hours</td>
</tr>
</tbody>
</table>

If Actinomyces is requested or suggested on Gram stain or an anaerobic swab collected or thick pus is received, add:

<table>
<thead>
<tr>
<th>Media</th>
<th>Incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fastidious Anaerobic Agar (BRUC)¹</td>
<td>AnO₂, 35°C x 10 days</td>
</tr>
<tr>
<td>Kanamycin/Vancomycin (KV)¹</td>
<td>AnO₂, 35°C x 10 days</td>
</tr>
<tr>
<td>Fastidious Anaerobic Broth (THIO)</td>
<td>O₂, 35°C x 10 days</td>
</tr>
</tbody>
</table>

¹ If anaerobic swab is used.
1If Actinomyces is requested or suggested on direct Gram stain, set up a second set of anaerobic media to be incubated for 10 days before opening jar.

<table>
<thead>
<tr>
<th>Media</th>
<th>Incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>If fungus culture is requested, add:</td>
<td>O₂, 30°C x 4 weeks</td>
</tr>
<tr>
<td>Inhibitory Mold Agar (IMA)*</td>
<td>O₂, 30°C x 4 weeks</td>
</tr>
<tr>
<td>Brain Heart Infusion Agar with 5% Sheep Blood, Gentamicin, Chloramphenicol, Cyclohexamide (BHIM)*</td>
<td></td>
</tr>
</tbody>
</table>

*Forward the fungal culture media to the Mycology section for incubation and work-up.

B. Interpretation of Cultures:

Examine the aerobic culture plates after 24 and 48 hours incubation and the anaerobic plates after 48 hours and second set of anaerobic media after 10 days incubation (if Actinomyces is requested or suggested on Gram stain). Examine THIO daily for up to 10 days incubation.

In general, these specimens are handled as Wound/Abscess Swabs and Drainage, except that some specimens may be contaminated with oral flora.

C. Susceptibility Testing:

Refer to Susceptibility Testing Manual.

V. Reporting Results

a) Gram stain: Report with quantitation the presence of pus cells and organisms.

b) Culture:

Negative Report: "Commensal flora" or "No growth".

Positive Report: Quantitate significant isolates with appropriate susceptibilities. If commensal flora is also present, report with quantitation.
VI. References

Record of Edited Revisions

Manual Section Name: Wounds / Tissues / Aspirates Culture Manual

<table>
<thead>
<tr>
<th>Page Number/Item</th>
<th>Date of Revision</th>
<th>Signature of Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page 3 – Introduction</td>
<td>June 15, 2004</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Reorganized table of contents categories</td>
<td>July 27, 2009</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Removed Appendices II to IV</td>
<td>July 27, 2009</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>New sections added – intraoperative/interventional swabs and aspirates</td>
<td>July 27, 2009</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Wounds/abscess/drainage – added Probable and Possible pathogens section</td>
<td>July 27, 2009</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Streptococcus anginosus group added to work up list for catheter tip, prosthetic devices, bile</td>
<td>July 27, 2009</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Extended Thio incubation to 5 days for intraoperative swabs, tissues</td>
<td>July 27, 2009</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Added instructions for extra anaerobic plates and extended THIO incubation if Actinomyces or organisms seen in gram and no growth in culture</td>
<td>July 27, 2009</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Contact Lens and Contact Lens solution moved to Sterility Manual</td>
<td>July 27, 2009</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Annual Review</td>
<td>July 27, 2009</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Annual Review</td>
<td>July 27, 2010</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Annual Review</td>
<td>August 01, 2011</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Annual Review</td>
<td>September 01, 2012</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Added mixed growth comments to sterile sites</td>
<td>September 01, 2012</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Add β-haemolytic Streptococcus and Staphylococcus lugdunensis to probable and possible pathogens</td>
<td>December 22, 2013</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Annual Review</td>
<td>December 22, 2013</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>For sternal wounds, include:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any amount of Probable and Possible Pathogens and Coagulase-negative-Staphylococcus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBUS tissue comment added to “Tissue” section</td>
<td>June 15, 2014</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Create proper headers</td>
<td>July 30, 2014</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Annual Review</td>
<td>July 30, 2014</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Specimen collection changed to ESwab</td>
<td>August 30, 2014</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Removed setting up if requested MKS and Kinyoun reporting on Lacrimal and Facial specimens</td>
<td>April 30, 2015</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Page Number/Item</td>
<td>Date of Revision</td>
<td>Signature of Approval</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Annual Review</td>
<td>April 30, 2015</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Mixed growth of …….list morphotypes.” P.9</td>
<td>April 30, 2015</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Removed all text in all sections under specimen collection and transportation and replaced it with link to Specimen collection manual QPCMI02001 where info is now housed.</td>
<td>May 26, 2015</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>In all sections, under processing of specimen added link to Specimen Processing Procedure QPCMI06003</td>
<td>August 18, 2015</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>For sections: Intraoperative/Interventional Abscess (Pus, Cyst Fluid or Aspirate) & Tissues/Biopsies (other than skin or transplant tissues) & Autopsy specimens, & Bile specimens & TPN - Moved processing of specimen steps to specimen processing manual, replaced with link to QPCMI06003 Tissues biopies other than skin – added gram stain procedure</td>
<td>August 28, 2015</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>For “Refer to Susceptibility Manual” Added hyperlink to actual manual For Tissues removed “add isolate if positive gram stain and notify ward” with “Telephone results of positive Gram stain or isolates not seen in gram to the ward/ordering physician.” Under section “Eye/corneal scraping” Removed instructions (already in specimen collection manual QPCMI02001) and added link to this manual.</td>
<td>August 28, 2015</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Transplant Specimens: For Bone specimens added : For bone and joint fluids specimens, report organisms to the species level. If not identified in lab, send to PHOL</td>
<td>January 7, 2016</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Annual Review Replaced Calcofluor with Fungi Fluor Stain</td>
<td>April 20, 2016</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Annual Review Changed Actino incubation time from 7 days to 10 days minimum</td>
<td>April 4, 2016</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Annual Review</td>
<td>April 15, 2017</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Annual Review</td>
<td>April 10, 2018</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Removed blank pages</td>
<td>September 14, 2018</td>
<td>Dr. T. Mazzulli</td>
</tr>
</tbody>
</table>