TABLE OF CONTENTS

ALA (RAPID PORPHYRIN TEST) ... 4
ANAEROBIC/CAMPYLOBACTER JAR SET UP ... 6
 Anaerobic Jar .. 6
 Campylobacter Jar .. 7
API Test Strips ... 8
IDENTIFICATION OF CORYNEBACTERIUM (API CORYNE) 8
IDENTIFICATION OF ENTEROBACTERIACEAE (API 20E) 13
IDENTIFICATION OF NON-ENTERIC GRAM-NEGATIVE RODS (API 20NE) 21
SYSTEM FOR IDENTIFICATION OF NEISSERIA & HAEMOPHILUS (API NH) 26
IDENTIFICATION OF STREPTOCOCCACEAE (API 20 Strep) 30
API WEBSITE for Identification Profile .. 35
BACITRACIN DISK TEST .. 36
BILE ESCULIN TEST ... 38
BILE SOLUBILITY TEST ... 39
CATALASE TEST .. 40
CETRIMIDE PSEUDOMONAS SELECTIVE AGAR 42
CRYPTOCOCCAL ANTIGEN .. 43
E. coli O157 LATEX TEST (OXOID) .. 49
GERM TUBE TEST .. 53
INDOLE TEST ... 55
KOELHLER ILLUMINATION .. 57
KOH STRING TEST ... 58
LAP TEST .. 60
MOTILITY TEST MEDIUM .. 62
MUG TEST (PGUA) ... 65
ONPG-PHENYLALANINE-MOTILITY MEDIUM (ONPG-PAM) 69
OPTOCHIN SENSITIVITY TEST ... 71
ORNITHINE DECARBOXYLASE ... 73
OXIDASE (API STRIP) ... 75
OXIDASE (SPOT TEST DROPPER) .. 77
PASTOREX STAPH PLUS TEST ... 78
PHADEBACT MONOCLONAL GC ... 80
PLATE STREAKING METHODS .. 82
PRO-AMP GLU-AMP TESTS .. 84
PYR TEST .. 86
QUANTITATION OF ORGANISMS & CELLS ON SMEARS & CULTURE ... 88
RapID ANA II SYSTEM ... 90
RapID MGP TEST ... 92
RapID VP TEST ... 94
SALMONELLA SEROLOGICAL AGGLUTINATION TEST 96
SHIGELLA SEROLOGICAL TESTING ... 99
SHIGELLA WELLCOLEX LATEX AGGLUTINATION 103
SPOT INDOLE .. 106
STAINING METHODS ... 108
ROUTINE STAINS ... 108
GRAM STAIN ... 108
GRAM STAINING MACHINE-MIDAS III OPERATION 110
BACTO 3-STEP GRAM STAIN PROCEDURE 113
ACRIDINE ORANGE STAIN ... 115
EOSINOPHIL STAIN ... 117
STAINS FOR GRAM POSITIVE BRANCHING / BEADED BACILLI 118
ACID FAST STAIN FOR MYCOBACTERIA (KINYOUN) 118
ACID FAST STAIN FOR NOCARDIA (MODIFIED KINYOUN) 120
REPORTING FOR GRAM POSITIVE BRACHING / BEADED BACILLI 122
FLUOROCHROME STAIN for MYCOBACTERIUM 123
FUNGAL STAINS ... 125
Table of Contents

- **Fungi-Fluor™ Stain** ... 125
- **India Ink** ... 128
- **Lactophenol Aniline Blue (LPCB)** ... 130
- **Staphaurex Test** .. 132
- **Streptococcal Grouping** ... 134
- **String Test** .. 136
- **Thermonuclease Test** .. 141
- **Tributyrin Test** ... 143
- **TSI (Triple Sugar Iron)** ... 144
- **Tube Coagulase Test** ... 147
- **Urea Slant** ... 149

Record of Edited Revisions ... 151

- **βCarba Test** .. 151
- **β-Lacta Test** ... 151
- **Beta-Lactamase Testing** .. 151
- **Denka MRSA Screen** .. 151

NOTE: This document is *Uncontrolled When Printed.*

Any documents appearing in paper form that do not state "CONTROLLED COPY" in red print are not controlled and should be checked against the document (titled as above) on the server prior to use.
ALA (RAPID PORPHYRIN TEST)

Principle

This test is used for rapidly detecting porphyrin as a means of speciating *Haemophilus* species. Enzymes which convert ALA (delta - aminolevulinic acid) to porphyrins in the biosynthesis of hemin (X factor) are produced by *Haemophilus parainfluenzae* but not by *H. influenzae*. The production of porphyrins is detected by examination with an ultra-violet (UV) light.

Reagents

BBL TAXO Differentiation Disks ALA. (Store refrigerated in the dark. Allow 10-15 minutes for the container to reach room temperature before opening).
Sterile distilled water

Other Materials

Petri dish
Inoculating loop
Gauze
Long-wave UV lamp
Forceps

Procedure

1. Place one ALA disk for each organism to be tested on the inside of a Petri dish using forceps.
2. Moisten each disk with one drop of sterile water.
3. Rub a loopful of the test organism onto the moistened disk holding it in place with sterile forceps.
4. Saturate gauze with water, squeeze out any excess and place it in the petri dish as far away from the disks as possible.
5. Incubate at 35°C.
6. Examine at hourly intervals for 6 hours by removing the top of the petri dish and exposing the disks to UV light in a darkened room. NB: Wear UV safety goggles when using the UV light.
Interpretation

A. Positive: Orange-red fluorescence

B. Negative: No fluorescence observed

Precautions

1. Use for differentiating *Haemophilus* spp. only.

2. Best results are obtained when a heavy inoculum is used.

3. ALA is light sensitive. Disks must be protected from light.

Quality Control

Test the following positive and negative controls each time an unknown is tested:

- Positive: *H. parainfluenza* (ATCC 7901)
- Negative: *H. influenzae* (ATCC 35056)

Reference

ANAEROBIC/CAMPYLOBACTER JAR SET UP

Anaerobic Jar

1. Anaerobic plates are kept in the nitrogen holding box until there is enough for a jar/container or until the end of the day.

2. Place the inoculated plates (max 14/jar or 10/container), biological indicators and anaerobic indicator strip into an anaerobic jar/container.

3. Tear open an anerobic foil sachet at the tear-nick indicated and remove the anaerobic paper sachet from within.

4. Immediately place the paper sachet in the jar down the side of the plates.

5. Close and seal jar/container (no catalyst required).
 Note: The time between opening the foil sachet and sealing the jar should not exceed one minute.
 Note: Jar and lid must be labelled with the same number.

6. Label jar/container with date and place in walk in incubator.

Control Testing

An anaerobic indicator is added to each jar as it is set up to visually check that anaerobic conditions have been achieved and maintained. Check the jar after 2 hours incubation to make sure the indicator does not indicate oxygen present.

Biological Indicator

Inoculate a quarter anaerobic plate with the following test organisms:

- *Bacteroides fragilis* ATCC 25285: growth
- *Clostridium sordellii* ATCC 9714: growth
- *Clostridium difficile* ATCC 9089: growth
- *Pseudomonas aeruginosa* ATCC 27853: no growth

Record results in the daily Anaerobic Jar QC worklist in LIS.
Campylobacter Jar

1. Campylobacter plates are kept in the CO₂ incubator until there is enough for a jar or until 4 p.m. (Any late cultures will be set up at the end of the shift).

2. Place a dampened paper towel into the bottom of an anaerobic jar/container.

3. Place the inoculated plates (max 14/jar or 10/container) into the jar/container. Include a plate freshly inoculated with the control organism.

4. Tear open a CampyGen foil sachet at the tear-nick indicated and remove the CampyGen paper sachet from within.

5. Immediately place the paper sachet in the jar down the side of the plates or in the pocket of a container.

6. Close and seal jar/container (no catalyst required).
 Note: The time between opening the foil sachet and sealing the jar should not exceed one minute.
 Note: Jar and lid must be labelled with the same number.

7. Label jar with date and place in 42°C incubator.

Biological Indicator

Inoculate a campylobacter agar plate with the following test organism:

Campylobacter jejuni ATCC 29428: growth

Record results in the daily Campylobacter Jar QC worklist in LIS.

Note: The technologist on the enteric bench is responsible for the daily subculturing of the control organism (3 new plates). One newly subcultured plate will be incubated with the reincubate culture jar. The old control plate and the remaining 2 newly subcultured plates will be kept in the CO₂ incubator until the end of the day.

The 2 new subcultured plates are for setting up new jars. If more are needed, the technicians will subculture new plates from the old control plate.
API Test Strips

IDENTIFICATION OF CORYNEBACTERIUM (API CORYNE)

Principle

The API CORYNE system facilitates the 24 hour identification of C. jeikeium (CDC Group JK), other medically important Corynebacteria, Rhodococcus equi, Listeria species, Erysipelothrix rhusiopathiae, Actinomyces pyogenes, Arcanobacterium haemolyticum, Brevibacterium species and Gardnerella vaginalis.

The API CORYNE strip consists of 20 microtubes containing dehydrated substrates for the demonstration of enzymatic activity or the fermentation of carbohydrates (CHO). The addition of a dense test suspension of bacteria rehydrates the enzymatic substrates. The metabolic end products produced during incubation are detected through spontaneous coloured reactions or by the addition of reagents.

The fermentation tests are inoculated with an enrichment medium (containing pH indicator) which reconstitutes the CHO substrates. Fermentation of CHO is detected by colour change in the pH indicator.

Materials

API Coryne strips - store at 2 - 8°C
GP medium - store at 2 - 8°C
McFarland Standard #6
Nitrate A - store at 2 - 30°C (Room Temperature)
Nitrate B - store at 2 - 8°C
Zym A - store at 2 - 8°C in the dark
Zym B - store at 2 - 8°C in the dark
PYZ - store at 2 - 8°C in the dark
H₂O₂ - store at 2 - 8°C
Mineral oil
Sterile saline 3 ml
Procedure

1. **Preparation of Inoculum**
 a) Only pure cultures of a single organism should be used (heavily inoculated sheep BAP x 3; incubate for 24 hours at 35°C in 5% CO₂).
 b) Using a sterile swab, harvest all the culture from 3 BAP and inoculate into 3 ml. sterile saline to give a turbidity of at least McFarland #6.

2. **Preparation of the Strip**
 a) An incubation tray is supplied for each strip.
 b) Dispense 5 ml of water into the wells of the tray.

3. **Inoculation of the Strip**
 a) Inoculate tests 1 → 11 of the strip (NIT to GEL).
 b) Avoid bubbles by tilting the strip slightly forward while placing the pipette tip on the side of the cupule.
 c) Add 3 drops into each cupule for tests NIT to ES.
 d) For the **URE** test fill the tube portion only.
 e) For the **GEL** test, fill both the tube and cupule. Then:
 f) For the last nine tests of the strip (O to GLYG transfer the rest of the bacterial suspension to an ampoule of GP medium. Mix well.
 g) Distribute the new suspension into the tubes only of tests O to GLYG.
 h) Overlay cupules **URE** and O to GLYG with mineral oil, forming a slight convex meniscus.
 i) Cover with incubation lid and incubate the strip for 24 hours at 35°C (non-CO₂).
REACTIONS TABLE

<table>
<thead>
<tr>
<th>TESTS</th>
<th>REACTIONS</th>
<th>NEGATIVE RESULTS</th>
<th>POSITIVE RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIT</td>
<td>Addition of NIT A + NIT B (10 min)</td>
<td>Colourless</td>
<td>Dark pink</td>
</tr>
<tr>
<td>NIT</td>
<td>NITrate reduction</td>
<td>Very pale pink</td>
<td>Red</td>
</tr>
<tr>
<td>PYZ</td>
<td>PYZ (10 min)</td>
<td>Colourless</td>
<td>Brown</td>
</tr>
<tr>
<td>PYZ</td>
<td>PYraZinamidase</td>
<td>Very pale brown</td>
<td>Orange</td>
</tr>
<tr>
<td>PyrA → BNAG</td>
<td>Addition of ZYM A + ZYM B (10 min)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PyrA</td>
<td>Pyrrolidonyl Arylamidase</td>
<td>Colourless</td>
<td>Orange</td>
</tr>
<tr>
<td>PyrA</td>
<td>Colourless</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAL</td>
<td>Colourless</td>
<td>Beige-pale purple</td>
<td>Purple</td>
</tr>
<tr>
<td>PAL</td>
<td>Pale orange</td>
<td></td>
<td></td>
</tr>
<tr>
<td>βGUR</td>
<td>Colourless</td>
<td>Pale grey</td>
<td>Blue</td>
</tr>
<tr>
<td>βGUR</td>
<td>Pale beige</td>
<td></td>
<td></td>
</tr>
<tr>
<td>βGAL</td>
<td>Colourless</td>
<td>Beige-pale purple</td>
<td>Purple</td>
</tr>
<tr>
<td>βGAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α GLU</td>
<td>Colourless</td>
<td>Beige-pale purple</td>
<td>Purple</td>
</tr>
<tr>
<td>α GLU</td>
<td>Pale green</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BNAG</td>
<td>Colourless</td>
<td>Beige-pale purple</td>
<td>Brown</td>
</tr>
<tr>
<td>BNAG</td>
<td>Pale brown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BNAG</td>
<td>Pale grey</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
REACTIONS TABLE (Cont'd)

<table>
<thead>
<tr>
<th>TESTS</th>
<th>REACTIONS</th>
<th>NEGATIVE RESULTS</th>
<th>POSITIVE RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESC</td>
<td>ESculin (β Glucosidase)</td>
<td>Colourless Grey</td>
<td>Black</td>
</tr>
<tr>
<td>URE</td>
<td>UREase</td>
<td>Yellow Orange</td>
<td>Red Pink</td>
</tr>
<tr>
<td>[GEL]</td>
<td>GELatine (hydrolysis)</td>
<td>No diffusion of black pigment</td>
<td>Diffusion of black pigment</td>
</tr>
<tr>
<td>O</td>
<td>Control (Fermentation)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLU</td>
<td>GLUCose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIB</td>
<td>RIBose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XYL</td>
<td>XYLOSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAN</td>
<td>MANnitol</td>
<td>Fermentation</td>
<td></td>
</tr>
<tr>
<td>MAL</td>
<td>MALtose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAC</td>
<td>LACtose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAC</td>
<td>Sucrose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLYG</td>
<td>GLYcoGen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAT</td>
<td>CATalase (ESC or GEL test)</td>
<td>No bubbles</td>
<td>Bubbles</td>
</tr>
</tbody>
</table>

- a) Record results on a API CORYNE profile sheet.
- b) Refer to the [API WEBSITE for Identification Profile](#)

References

IDENTIFICATION OF ENTEROBACTERIACEAE (API 20E)

Principle

The API 20E system facilitates the 24-hour identification of Enterobacteriaceae as well as 24 or 48-hour identification of other Gram negative bacteria.

The API 20E strip consists of microtubes containing dehydrated substrates for the demonstration of enzymatic activity and carbohydrate (CHO) fermentation. The substrates are reconstituted by adding a bacterial suspension. After incubation, the metabolic end products are detected by indicator systems or the addition of reagents. CHO fermentation is detected by colour change in the pH indicator.

Materials

API 20E strips - store at 2-8°C
0.85% sterile saline
Nitrate A - store at 2-8°C
Nitrate B - store at 2-8°C
Mineral oil
Zinc dust
Kovacs Reagent
Voges - Proskauer Reagents
Ferric Chloride Store at 2-8°C
H2O2
Oxidase Reagent
OF Dextrose ID of non-
Motility Medium Enterobacteriaceae

Procedure

1. Preparation of Inoculum
 a) Add 5 ml. of 0.85% saline to a sterile test tube.
 b) Using a sterile inoculating loop, carefully touch the centre of a well isolated colony (2-3 mm. Diameter) and thoroughly emulsify in the saline.
2. Preparation of the Strip
 a) An incubation tray and lid is supplied for each strip.
 b) Dispense 5 ml of water into the tray.

3. Inoculation of the Strip
 a) Remove the cap from the tube containing the bacterial suspension and insert a 5 ml Pasteur pipette.
 b) Tilt the API 20E incubation tray and fill the tube section of the microtubes by placing the pipette tip against the side of the cupule.

 Note: The ADH, LDC, ODC, H2S, AND URE reactions can be interpreted best if these microtubes are slightly underfilled.

 c) Fill both the TUBE and CUPULE section of [CIT], [VP] and [GEL] tubes.
 d) After inoculation, completely fill the cupule section of the ADH, LDC, ODC, H2S and URE tubes with mineral oil.
 e) Using the excess bacterial suspension, inoculate an agar slant or plate (non-selective media such as nutrient agar, blood agar or tryptic (trypsin) soy agar is suggested) as a purity check and for oxidase testing, serology, and/or additional biochemical testing. Incubate the slant or plate for 18-24 hours at 35°C.

4. Incubation of the Strip
 a) After inoculation, place the plastic lid on the tray and incubate the strip for 18-24 hours at 35°C in a non-CO2 incubator.
 b) Weekend incubation: The biochemical reactions of the API 20E should be read after 18-24 hours incubation. If the strips cannot be read after 24 hours incubation at 35°C, the strips should be removed from the incubator and stored at 2-8°C (refrigerator) until the reactions can be read.

5. Reading the Strip
 a) After 18 hours of incubation and before 24 hours incubation, record all reactions not requiring the addition of reagents.
b) If the **GLU tube is negative** (blue or green), do not add reagents. Reincubate a further 18-24 hours.
c) If the GLU is positive (yellow):

i. Perform the oxidase test.

A portion of the growth from the agar slate or plate, inoculated from the 20E bacterial suspension, should be rubbed onto filter paper to which a drop of oxidase reagent (1% tetramethyl-p-phenylenediamine dihydrochloride) has been added. The area where the growth has been added will turn dark purple within 10 seconds if the reaction is positive and will be colourless or light purple if negative.

Note: (a) Nichrome wire loops should NOT be used in performing the oxidase test. Nichrome wire can cause a false positive reaction.

(b) The oxidase test should NOT be performed using bacterial growth from selective media such as MacConkey, EMB, etc.

Note: (a) Before addition of reagents, observe GLU tube (positive or negative) for bubbles.

(b) The nitrate reduction and indole tests must be performed last since these reactions release gaseous products which interfere with the interpretation of other tests on the strip. The plastic incubation lid should not be replaced after the addition of these reagents.

ii. Add the reagents to TDA and VP tubes. If positive, the TDA reactions will be immediate, whereas the VP reaction may be delayed up to 10 minutes.

iii. The Kovacs’ reagent should then be added to the IND tube.

iv. The Nitrate Reduction test should be performed on all oxidase positive organisms. The reagents should be added to the GLU tube after the Kovacs Reagent has been added to the IND tube.
Interpretation

a) Record results on a API 20E analytical profile sheet.

b) The tests are separated into groups of three. The following numerical value is assigned to each reaction recorded:

- 1- positive reaction in the first test of the group
- 2- positive reaction in the second test of the group
- 4- positive reaction in any test
- 0- negative reaction in any test

c) Refer to the [API WEBSITE for Identification Profile](#)

Reference

SUMMARY OF RESULTS - 18-24 HOUR PROCEDURE

<table>
<thead>
<tr>
<th>TUBE</th>
<th>INCUBATION</th>
<th>POSITIVE</th>
<th>NEGATIVE</th>
<th>COMMENTS</th>
</tr>
</thead>
</table>
| ONPG | | Yellow | Colourless | (1) Any shade of yellow is a positive reaction.
(2) VP tube, before the addition of reagents, can be used as a negative control. |
| ADH | 18-24 hr | Red or Orange | Yellow | Orange reactions occurring at 36-48 hours should be interpreted as negative. |
| | 36-48 hr | Red | Yellow or Orange | |
| LDC | 18-24 hr | Red or Orange | Yellow | Any shade of orange within 18-24 hours is a positive reaction. At 36-48 hours, orange decarboxylase reactions should be interpreted as negative. |
| | 36-48 hr | Red | Yellow or Orange | |
| ODC | 18-34 hr | Red or Orange | Yellow | Orange reactions occurring at 36-48 hours should be interpreted as negative. |
| | 36-48 hr | Red | Yellow or Orange | |
| CTI | | Turquoise or | Light Green | (1) Both the tube and cupule should be filled.
(2) Reaction is read in the aerobic (cupule) area. |
| | | Dark Blue | Or Yellow | |
| H₂S | | Black Deposit | No Black Deposit | (1) H₂S production may range from a heavy black deposit to a very thin black line around the tube bottom. Carefully examine the bottom of the tube before considering the reaction negative.
(2) A “browning” of the medium is a negative reaction unless a black deposit is present. "Browning” occurs with TDA positive organisms. |
| URE | 18-24 hr | Red or Orange | Yellow | A method of lower sensitivity has been chosen. *Klebsiella*, *Proteus* and *Yersinia* routinely give positive reactions. |
| | 36-48 hr | Red | Yellow or Orange | |
| TDA | | Add 1 drop 10% Ferric chloride. | Brown-Red | (1) Immediate reaction.
(2) Indole positive organisms may produce a golden orange colour due to indole production. This is a negative reaction. |
| IND | | Add 1 drop Kovacs Reagent | Red Ring | (1) The reaction should read within 2 minutes after the addition of the Kovacs reagents and the results recorded.
(2) After several minutes, the HCl present in Kovacs reagent may react with the plastic of the cupule resulting in a change from a negative (yellow) colour to a brownish-red. This is a negative reaction. |
SUMMARY OF RESULTS - 18-24 HOUR PROCEDURE (cont’d)

<table>
<thead>
<tr>
<th>TUBE</th>
<th>INCUBATION</th>
<th>POSITIVE</th>
<th>NEGATIVE</th>
<th>COMMENTS</th>
</tr>
</thead>
</table>
| VP | Add 1 drop of 40% Potassium Hydroxide, then 1 drop of alpha-naphthol. | Red | Colourless | (1) Wait 10 minutes before considering the reaction negative.
(2) A pale pink colour which appears immediately after the addition of reagents but which turns dark pink or red after 10 minutes should be interpreted as positive. Motility may be observed by hanging drop or wet mount preparation. |
| GEL | Diffusion of the pigment | No diffusion | | (1) The solid gelatin particles may spread throughout the tube after inoculation. Unless diffusion occurs, the reaction is negative.
(2) Any degree of diffusion is a positive reaction. |
| GLU | Yellow
Or Gray | Blue or Blue-Green | | COMMENTS FOR ALL CARBOHYDRATES
Fermentation
(Enterobacteriaceae, Aeromonas, Vibrio)
(1) Fermentation of the carbohydrates begins in the most anaerobic portion (bottom) of the tube. Therefore, these reactions should be read from the bottom of the tube to the top.
(2) A yellow colour at the bottom of the tube only indicates a weak or delayed positive reaction.
Oxidation (Other Gram-negatives)
(1) Oxidative utilization of the carbohydrates begins in the most aerobic portion (top) of the tube. Therefore, these reactions should be read from the top to the bottom of the tube
(2) A yellow colour in the upper portion of the tube and blue in the bottom of the tube indicate oxidative utilization of the sugar. This reaction should be considered positive only for non-Enterobacteriaceae gram negative rods. This is a negative reaction for fermentative organisms such as Enterobacteriaceae. |
SUMMARY OF RESULTS - 18- 24 HOUR PROCEDURE (cont’d)

<table>
<thead>
<tr>
<th>TUBE</th>
<th>INCUBATION</th>
<th>POSITIVE</th>
<th>NEGATIVE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLU</td>
<td>After reading GLU reaction, add 2 drops 0.8% sulfanilic acid and 2 drops 0.5% N. N-dimethyl-alpha-naphthylamine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO₂</td>
<td>Red</td>
<td>Yellow</td>
<td>(1) Before addition of reagents, observe GLU tube (positive or negative) for bubbles. Bubbles are indicative of reduction of nitrate to the nitrogenous (N₂) state.</td>
<td></td>
</tr>
<tr>
<td>N₂ gas</td>
<td>Bubbles: Yellow after reagents and zinc</td>
<td>Orange after reagents and zinc</td>
<td>(2) A positive reaction may take 2-3 minutes for the red colour to appear.</td>
<td></td>
</tr>
<tr>
<td>MAN</td>
<td>After reading carbohydrate reaction, add 1 drop 1.5% H₂O₂</td>
<td></td>
<td></td>
<td>(3) Confirm a negative test by adding zinc dust or 20 mesh granular zinc. A pink-orange colour after 10 minutes confirms a negative reaction. A yellow colour indicates reduction of nitrates to the nitrogenous (N₂) state.</td>
</tr>
<tr>
<td>INO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catalase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bubbles</td>
<td>No bubbles</td>
<td>(1) Bubbles may take 1-2 minutes to appear.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) Best results will be obtained if the test is run in tubes which have no gas from fermentation.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE

Any documents appearing in paper form that do not state "CONTROLLED COPY" in red print are not controlled and should be checked against the document (titled as above) on the server prior to use.
IDENTIFICATION OF NON-ENTERIC GRAM-NEGATIVE RODS (API 20NE)

Principle

The API 20NE system facilitates the identification of non-fastidious Gram-negative rods not belonging to the *Enterobacteriaceae* within 48 hours.

The API 20NE strip consists of microtubes containing dehydrated media and substrates. The media microtubes containing conventional tests are inoculated with a bacterial suspension which reconstitutes the media. After incubation, the metabolic end products are detected by indicator systems or the addition of reagents. The substrate microtubes contain assimilation tests and are inoculated with a minimal medium. If the bacteria are capable of utilizing the corresponding substrate, then they will grow.

Materials

API 20NE strips - store at 2-8°C
0.85% sterile saline
Mineral oil
Zinc dust
AUX Medium
James Reagent
Nitrate 1 - store at 2-8°C
Nitrate 2 - store at 2-8°C
Oxidase Reagent

Procedure

1. **Preparation of Inoculum**
 a) Add 2 ml. of 0.85% saline to a sterile test tube.
 b) Using a sterile inoculating loop, carefully touch the centre of a well isolated colony (2-3 mm. Diameter) and thoroughly emulsify in the saline. The suspension turbidity should be equal to a 0.5 McFarland standard.

2. **Preparation of the Strip**
 a) An incubation tray and lid are supplied for each strip.
 b) Dispense 5 ml of distilled water in to the tray.
4. **Inoculation of the Strip**

 a) Remove the cap from the tube containing the bacterial suspension and insert a sterile pipette.

 b) Tilt the API 20NE incubation tray and fill the TUBE section of the NO₃ to PNPG microtubes by placing the pipette tip against the side of the cupule.

 c) Open an ampule of AUX Medium and add 200 uL of the bacterial suspension to the ampule. Mix well with a pipette while avoiding the formation of air bubbles.

 d) Using the AUX Medium bacterial suspension, fill both the TUBE and CUPULE section of [GLU] to [PAC]. Do not overfill the cupules. Fill to a flat or slightly convex meniscus.

 e) After inoculation, completely fill the CUPULE section of the 3 underlined tests, GLU, ADH and URE tubes with mineral oil.

 f) Using the excess bacterial suspension, inoculate an agar slant or plate (non-selective media such as nutrient agar, blood agar or tryptic (trypticase) soy agar is suggested) as a purity check and for oxidase testing, and/or additional biochemical testing. Incubate the slant or plate with the API 20NE strip.

4. **Incubation of the Strip**

 a) After inoculation, place the plastic lid on the tray and incubate the strip for 24 hours at 30°C in a non-CO₂ incubator.

5. **Reading the Strip**

 a) After 24 hours incubation, record all reactions not requiring the addition of reagents.

 b) Perform the oxidase test.

 A portion of the growth from the agar slate or plate, inoculated from the 20NE bacterial suspension, should be rubbed onto filter paper to which a drop of oxidase reagent (1% tetramethyl-p-phenylenediamine dihydrochloride) has been added. The area where the growth has been added will turn dark purple within 10 seconds if the reaction is positive and will be colourless or light purple if negative.

 Note:

 a) Nichrome wire loops should NOT be used in performing the oxidase test. Nichrome wire can cause a false positive reaction.
(b) The oxidase test should NOT be performed using bacterial growth from selective media such as MacConkey, EMB, etc.

c) Assimilation tests are observed for bacterial growth. An opaque cupule indicates a positive reaction.

d) Protect the assimilation tests with the incubation tray lid during the reading of the Nitrate and TRP tests.

e) Perform the Nitrate test.

i. Add one drop of Nitrate 1 and one drop of Nitrate 2 reagents to NO₃ cupule.

ii. After 5 minutes a red color indicates a positive reaction.

iii. A negative reaction may be due to the production of nitrogen. Add Zinc dust to the NO₃ cupule. After 5 minutes a colorless cupule indicates a positive reaction. A pink-red cupule indicates a negative reaction.

f) Perform the TRP test.

i. Add one drop of JAMES Reagent.

ii. The reaction takes place immediately, producing a pink color in the entire cupule if the reaction is positive.

Interpretation

1. Use the API 20NE analytical profile index.

2. The tests are separated into groups of three. The following numerical value is assigned to each positive reaction recorded:

 1 - positive reaction in the first test of the group
 2 - positive reaction in the second test of the group
 4 - positive reaction in the third test of the group

3. Refer to the API WEBSITE for Identification Profile

4. The strip must be reincubated in the following cases:

 i. If the profile cannot be found in the API web site.
 ii. If the following note is indicated for the profile obtained:

 IDENTIFICATION NOT VALID
 BEFORE 48-HR INCUBATION

UNIVERSITY HEALTH NETWORK/MOUNT SINAI HOSPITAL, DEPARTMENT OF MICROBIOLOGY
iii. If the strip is to be reincubated, remove the reagents from the NO₃ and TRP cupules and then cover these tests with mineral oil.

iv. Reincubate the strip for another 24 hours at 30°C in a non-CO₂ incubator.

v. Read all the tests again, except for NO₃, TRP and GLU.

READING TABLE

<table>
<thead>
<tr>
<th>TESTS</th>
<th>SUBSTRATES</th>
<th>REACTONS/ENZYMES</th>
<th>NEGATIVE RESULTS</th>
<th>POSITIVE RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO₃</td>
<td>Potassium nitrate</td>
<td>NITrate reduction to nitrates</td>
<td>NIT 1 + NIT 2 / 5 min colourless</td>
<td>pink-red</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NITrates to nitrogen</td>
<td></td>
<td>pink colourless</td>
</tr>
<tr>
<td>TRP</td>
<td>tryptophane</td>
<td>indole production</td>
<td></td>
<td>JAMES / immediate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>colourless / pale green / yellow</td>
<td>pink</td>
</tr>
<tr>
<td>GLU</td>
<td>glucose</td>
<td>Acidification</td>
<td>blue to green</td>
<td>yellow</td>
</tr>
<tr>
<td>ADH</td>
<td>arginine</td>
<td>arginine dihydrolase</td>
<td>yellow</td>
<td>orange/pink/red</td>
</tr>
<tr>
<td>URE</td>
<td>urea</td>
<td>Urease</td>
<td>yellow</td>
<td>orange/pink/red</td>
</tr>
<tr>
<td>ESC</td>
<td>esculin</td>
<td>hydrolysis (β-glucosidase)</td>
<td>yellow</td>
<td>grey/brown/black</td>
</tr>
<tr>
<td>GEL</td>
<td>gelatine (with India ink)</td>
<td>hydrolysis (protease)</td>
<td>no pigment diffusion</td>
<td>diffusion of black pigment</td>
</tr>
<tr>
<td>PNPG</td>
<td>p-nitrophenyl-β-D-galactopyranoside</td>
<td>β-galactosidase</td>
<td>colourless</td>
<td>yellow</td>
</tr>
<tr>
<td>[GLU]</td>
<td>glucose</td>
<td>Assimilation</td>
<td>transparent</td>
<td>opaque</td>
</tr>
<tr>
<td>[ARA]</td>
<td>arabinose</td>
<td>Assimilation</td>
<td>transparent</td>
<td>opaque</td>
</tr>
<tr>
<td>[MNE]</td>
<td>mannose</td>
<td>Assimilation</td>
<td>transparent</td>
<td>opaque</td>
</tr>
</tbody>
</table>
Quality Control

To be performed on receipt of every new lot of strip by the QC bench technologist.

Reference

Reference Package Insert - api 20NE system for the identification, bioMerieux Inc., Missouri USA.
SYSTEM FOR IDENTIFICATION OF NEISSERIA & HAEMOPHILUS (API NH)

Principle

The API NH strip consists of 10 microtubes containing dehydrated substrates, which enable the performance of 12 identification tests (enzymatic reactions or sugar fermentations), as well as the detection of a penicillinase (particular interest in *Haemophilus influenzae*, *Haemophilus parainfluenzae*, *Branhamella catarrhalis (Moraxella catarrhalis)* and *Neisseria gonorrhoeae*).

The reactions produced during incubation result in spontaneous color changes or are revealed by the addition of reagents.

After a 2-hour incubation period at a temperature of 35-37°C, the reading of the reactions is performed visually and identification is obtained by consulting the profile list.

Reagents

API NH strips
NaCl 0.85% Medium (2 ml)
JAMES reagent
ZYM B reagent
Swab
Incubation box
Result sheet
1 package insert
McFarland Standard, point 4 on the scale
Mineral oil
Pipettes
Ampule rack
Ampule protector

Procedure

1. Specimen Processing

The microorganisms to be identified must first be isolated as separate colonies by streaking the specimen onto Blood agar, Chocolate agar or Martin-Lewis agar according to standard microbial techniques.
2. Preparation of Strip

Each strip is composed of 10 cupules. Each cupule has an open and closed area (cupule and tube). An incubation tray is supplied for each strip. It serves as a support and individual chamber while both protecting the strip from contaminants in the air and assuring the humid atmosphere necessary to avoid dehydration during incubation.

- Remove the strip from its individual packaging
- Place the strip in the incubation box
- Discard the desiccant sachet

Record the specimen number on the flat portion of the tray (do not record the number on the lid as it may be misplaced during handling).

3. Preparation of the Inoculum

- Open an ampule of NaCl 0.85% Medium (2 ml) with the ampule protector.
- Using a swab, pick up a few well-isolated colonies and prepare a suspension with a turbidity equivalent to 4 McFarland, ensuring it is well mixed.
- The suspension should be used immediately after preparation.

4. Inoculation of the Strip

- Distribute the prepared bacterial suspension into the cupules, avoiding the formation of bubbles (tilt the strip slightly forwards and place the tip of the pipette or PSipette against the side of the cupule):
 - Only fill the tube part of the first 7 microtubes (PEN to URE): about 50 µl.
 - Fill tube and cupule of the last 3 microtubes LIP/ProA, PAL/GGT, βGAL/IND: about 150 µl, avoiding the formation of a convex meniscus.
- Cover the first 7 tests (PEN to URE) with mineral oil (underlined tests).

NOTE: The quality of the filling is very important: tubes which are insufficiently or excessively full may cause false positive or false negative results.

- Close the incubation box.
- Incubate for 2 hours at 35-37°C in aerobic conditions.

5. Incubation

Incubate for 2 hours at 35-37°C in aerobic conditions.
6. Reading the Strip

Refer to the Reactions Table for a description of how to read the reactions.

Note all spontaneous reactions (PEN to βGAL) and record them as + or -.
- Add 1 drop of ZYM B reagent to microtubes 8 and 9: LIP/ProA and PAL/GGT.
- Add 1 drop of JAMES reagent to microtube 10: βGAL/IND.
- **Wait 2 minutes** then read the reactions by referring to the Reading Table in this package insert and record them on the result sheet.
 - If the LIP reaction is positive (blue pigment), interpret the ProA reaction as negative, whether the ZYM B reagent has been added or not.
 - If, after a 2-hour incubation period, several reactions (fermentation, penicillinase) are doubtful, re-incubate the strip for another 2 hours and read the reactions again (the enzymatic tests should not be re-read in this case).

Reactions Table

<table>
<thead>
<tr>
<th>TESTS</th>
<th>REACTIONS</th>
<th>SUBSTRATES</th>
<th>QTY (mg)</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) PEN</td>
<td>PENicillinase</td>
<td>Penicillin G</td>
<td>1.36</td>
<td>Blue (penicillinase absent)</td>
</tr>
<tr>
<td>2) GLU</td>
<td>GLUcose (Acidification)</td>
<td>Glucose</td>
<td>0.5</td>
<td>Red</td>
</tr>
<tr>
<td>3) FRU</td>
<td>FruCTose (Acidification)</td>
<td>Fructose</td>
<td>0.1</td>
<td>Red-orange</td>
</tr>
<tr>
<td>4) MAL</td>
<td>MALtose (Acidification)</td>
<td>Maltose</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>5) SAC</td>
<td>SACcharose/Sucrose (Acidification)</td>
<td>Sucrose</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>6) ODC</td>
<td>Ornithine DeCarboxylase</td>
<td>Ornithine</td>
<td>0.55</td>
<td>Yellow-green</td>
</tr>
<tr>
<td>7) URE</td>
<td>UREase</td>
<td>Urea</td>
<td>0.41</td>
<td>Yellow</td>
</tr>
<tr>
<td>8a) LIP</td>
<td>LIPasE</td>
<td>5-bromo-3-indoxyl-caprate</td>
<td>0.033</td>
<td>Colorless</td>
</tr>
<tr>
<td>9a) PAL</td>
<td>Alkaline Phosphatase</td>
<td>Para-Nitrophenyl-phosphate 2CHA</td>
<td>0.038</td>
<td>Colorless</td>
</tr>
<tr>
<td>10a) βGAL</td>
<td>Beta GALactosidaase</td>
<td>Para-Nitrophenyl-BD galactopyranoside</td>
<td>0.04</td>
<td>Colorless</td>
</tr>
</tbody>
</table>
Reactions Table (Cont'd)

<table>
<thead>
<tr>
<th>TESTS</th>
<th>REACTIONS</th>
<th>SUBSTRATES</th>
<th>QTY (mg)</th>
<th>RESULTS</th>
</tr>
</thead>
</table>
| 8b) ProA | Proline Arylamidase
If LIP is +, ProA is always - | Proline-4-methoxy-β naphthylamide | 0.056 | **ZYM B / 3 min**
| | | | | **Yellow**
| | | | | **Pale orange**
| | | | | **(brown if LIP +)**
| | | | | **Orange**
| 9b) GGT | Gamma Glutamyl Transferase | Gamma glutamyl 4-methoxy-β naphthylamide | 0.049 | **ZYM B / 3 min**
| | | | | **Yellow**
| | | | | **Pale orange**
| | | | | **(yellow-orange if PAL +)**
| | | | | **Orange**
| 10b) IND | INDole | Tryptophane | 0.036 | **JAMES / 3 min**
| | | | | **Colorless**
| | | | | **Pink**

Interpretation

a) Record results on a API NH profile sheet.

b) Refer to the [API WEBSITE](http://apiwebsite.com) for Identification Profile

Quality Control

To be performed on receipt of every new lot of strip by the QC bench technologist.

QC organisms to be used:

- *Neisseria gonorrhoea* ATCC 31426
- *Haemophilus influenzae* ATCC 10211
- *Branhamella catarrhalis* ATCC 23246
- *Haemophilus paraphrophilus* ATCC 49917

Reference

Reference Package Insert - api NH system for the identification of *Neisseria* and *Haemophilus* bioMerieux Inc., Missouri USA.
IDENTIFICATION OF STREPTOCOCCACEAE (API 20 Strep)

Principle

API 20 Strep facilitates the group or species identification of most streptococci and enterococci, and those most common related organisms.

The API 20 Strep consists of 20 microtubes containing dehydrated substrates for the demonstration of enzymatic activity or the fermentation of sugars. The enzymatic tests are inoculated with a dense suspension of organisms, made from a pure culture, which is used to reconstitute the enzymatic substrates. During incubation, metabolism produces colour changes that are either spontaneous or revealed by the addition of reagents. The fermentation tests are inoculated with an enriched medium which rehydrates the sugar substrates. Fermentation of carbohydrates is detected by a shift in the PH indicator.

Materials

API 20 Strep strips
API GP medium, 2 ml \(\{ \) Store at 2-8\(^0\)C
Sterile distilled water, 2 ml \(\{ \)
Mineral oil

NIN – Ninhydrin \(\{ \)
ZYM A Reagent \(\{ \) Store at 2-8\(^0\)C
ZYM B Reagent \(\{ \)
Voges - Proskauer Reagents \(\{ \)

Procedure

6. Preparation of Inoculum
 a) Add 2 ml of **sterile distilled water** without additives to a sterile test tube.
 b) Using a sterile swab, make a dense suspension with a turbidity greater than 4 McFarland standard from a fresh, pure culture; two plates may be necessary for an adequate inoculum. This suspension must be used immediately after preparation.
7. **Preparation of the Strip**
 a) An incubation tray and lid is supplied for each strip.
 b) Dispense 5 ml of water into the tray.
 c) Label the tray with the patient name and order number.

8. **Inoculation of the Strip**
 a) Remove the cap from the tube containing the bacterial suspension.
 b) When inoculating the API 20 Strep strip, avoid the formation of bubbles (tilt the strip slightly forwards and place the tip of a Pasteur pipette against the side of the cupule):

 The first half of the strip (tests VP to ADH) will be inoculated with this suspension
 a) For tests VP to LAP, distribute approximately 100µl into each cupule.
 b) For the **ADH** test: fill the tube only.

 For the second half of the strip (RIB to GLYG):
 a) Carefully open an ampule of API GP Medium and transfer the rest of the suspension (approximately 0.5 ml) into it. Mix well.
 b) Distribute this new suspension into the tubes only.
 c) Fill the cupule of the underlined tests (**ADH** to **GLYG**) with mineral oil to form a convex meniscus.
 d) Place the lid on the tray.
 e) Using the excess bacterial suspension, inoculate a blood agar plate as a purity check. Incubate blood agar plate in CO2 overnight.

9. **Incubation of the Strip**
 a) Incubate the strip at 36°C in aerobic conditions for 4 to 4½ hours to obtain a first reading and for 24 hours to obtain a second reading if required.

10. **Reading the Strip**
 a) After 4 hours of incubation: add the reagents:
 VP test: 1 drop each of VP 1 and VP 2
 HIP test: 2 drops of NIN
 PYRA, aGAL, βGUR, βGAL, PAL and LAP tests:
1 drop each of ZYM A and ZYM B
Wait 10 minutes; record the reactions on the API 20 Strep analytical profile sheet

Reincubation is necessary in the following cases:
- low discrimination;
- unacceptable or doubtful profile;
- or if the following comment is given for the profile:
 IDENTIFICATION NOT VALID
 BEFORE 24 HOURS INCUBATION
In this case, after 24 hours, reread the reactions ESC, ADH and RIB to GLYG. Do not reread the enzymatic reactions (HIP, PYRA, aGAL, ßGUR, ßGAL, PAL, LAP) and VP

Record the reactions on the API 20 Strep analytical profile sheet
Interpretation

SUMMARY OF RESULTS – 4 to 24 HOUR PROCEDURE

<table>
<thead>
<tr>
<th>TESTS</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEGATIVE</td>
<td>POSITIVE</td>
</tr>
<tr>
<td>VP</td>
<td>Add VP 1 + VP2/ wait 10 minutes</td>
</tr>
<tr>
<td>HIP</td>
<td>Add NIN/wait 10 minutes</td>
</tr>
<tr>
<td>ESC</td>
<td>4 hours</td>
</tr>
<tr>
<td>Colourless</td>
<td>Colourless</td>
</tr>
<tr>
<td>Pale yellow</td>
<td>Pale yellow</td>
</tr>
<tr>
<td>Light grey</td>
<td>Light grey</td>
</tr>
<tr>
<td>PYRA</td>
<td>Add ZYM A + ZYM B/ wait 10 minutes (PYRA to LAP)</td>
</tr>
<tr>
<td>aGAL</td>
<td>Colourless</td>
</tr>
<tr>
<td>ßGUR</td>
<td>Colourless</td>
</tr>
<tr>
<td>ßGAL</td>
<td>Colourless or very pale violet</td>
</tr>
<tr>
<td>PAL</td>
<td>Colourless or very pale violet</td>
</tr>
<tr>
<td>LAP</td>
<td>Colourless</td>
</tr>
<tr>
<td>ADH</td>
<td>Yellow</td>
</tr>
<tr>
<td>RIB</td>
<td>4 hours</td>
</tr>
<tr>
<td>Red</td>
<td>Orange/Red</td>
</tr>
<tr>
<td>ARA</td>
<td>Red</td>
</tr>
<tr>
<td>MAN</td>
<td>Red</td>
</tr>
<tr>
<td>SOR</td>
<td>Red</td>
</tr>
<tr>
<td>LAC</td>
<td>Red</td>
</tr>
<tr>
<td>TRE</td>
<td>Red</td>
</tr>
<tr>
<td>INU</td>
<td>Red</td>
</tr>
<tr>
<td>RAF</td>
<td>Red</td>
</tr>
<tr>
<td>AMD</td>
<td>Red</td>
</tr>
<tr>
<td>GLYG</td>
<td>Red or Orange</td>
</tr>
</tbody>
</table>

Interpretation

d) The tests are separated into groups of three. The following numerical value is assigned to each reaction recorded:

3- positive reaction in the first test of the group
4- positive reaction in the second test of the group
4- positive reaction in any test
1- negative reaction in any test

e) Refer to the API WEBSITE for Identification Profile
1. Read API biochemical strip as per reading procedure.

2. Go to API website:

 https://apiweb.biomerieux.com/servlet/Authenticate?action=prepareLogin

 Login: See Seniors

3. Enter reactions or profile number

4. Obtain identification

5. Copy the identification and percent probability to the LIS workcard.
BACITRACIN DISK TEST

Principle

This is a screening test for the presumptive identification of Group A Streptococci which are susceptible to 0.04U bacitracin. Other beta-haemolytic streptococci are usually resistant to this concentration of bacitracin.

Reagents

Bacto Differentiation Disks Bacitracin (0.04U). Store refrigerated.
5% Sheep Blood Agar (BA)

Other Materials

Culture loop
Cotton swabs
Forceps

Procedure

1. Inoculate the surface of the BA with the suspect beta haemolytic Streptococcus. Streak for confluent growth.
2. Using aseptic technique, place a bacitracin disk onto the inoculated surface.
3. Incubate in O₂ at 35°C X 18-24 hr.

Interpretation

Susceptible: any zone of inhibition around the disk (Presumptive Group A Streptococcus).
Resistant: growth up to the edge of the disk

Precautions

1. Other beta-haemolytic streptococci may be susceptible to bacitracin. Therefore this test can be used only for the presumptive identification of Gp. A Strep.
Quality Control

Test with known susceptible and resistant control strains weekly.
 Susceptible: Gp.A Strep. (ATCC 19615)
 Resistant: Gp.B Strep. (ATCC 13813)

Reference

1. Difco Differentiation Disks Bacitracin package insert.
BILE ESCULIN TEST

Principle

This test determines the ability of an organism to grow in the presence of bile and to hydrolyze the glycoside esculin to esculetin and glucose. The test is used to presumptively identify Group D Streptococci.

Materials

Bile esculin agar slant / plate – Store at 2-8°C
Culture loop

Procedure

1. Heavily inoculate a bile esculin slant / plate with the suspect organism.
2. Incubate in O₂ at 35°C for 18-24 hr.

Interpretation

Positive: Presence of a dark brown to black colour on the slant.

Negative: No blackening of the medium. Growth may occur, but this does not indicate esculin splitting.

Quality Control

Each new lot of media should be tested with known control strains.

- Positive:
 E. faecalis (ATCC 29212)
- Negative:
 Gp.B Strep. (ATCC 13813)
- No Growth:
 Gp.A Strep. (ATCC 19615)

References

BILE SOLUBILITY TEST

Principle

Tests the ability of alpha haemolytic streptococci to lyse in the presence of bile salts. This test is used for the identification of *Streptococcus pneumoniae*.

Reagents

BBL Spot Test dropper (10% sodium desoxycholate). Store at room temperature.

Procedure

1. Hold the dropper upright and squeeze gently to crush the glass ampoule inside the dispenser.
2. Place 1 drop of the reagent directly on isolated colonies of suspected *S. pneumoniae*.
3. Keep the plates very level to prevent the reagent from running and washing a non-pneumococcal colony away, producing a false positive result.
4. Incubate at room temperature on the bench for 15-30 minutes until the reagent drys. Do not invert the plate; leave the lid ajar.
5. Examine the colonies for lysis.

Interpretation

- Positive (bile soluble): Lysis of the colonies.
- Negative (bile insoluble): No lysis of colonies.

Quality Control

Test with known positive and negative control strains weekly.

- Positive: *S. pneumoniae* (ATCC 6303)
- Negative: *S. sanguinis* (ATCC 10556)

References

CATALASE TEST

Principle

Detects the presence of the enzyme catalase which hydrolyzes H₂O₂ to produce H₂O and O₂. This test is used to differentiate Staphylococci (catalase positive) from Streptococci (catalase negative).

Reagents

Hydrogen peroxide (H₂O₂), 3%
 Store in a dark bottle and avoid any undue exposure to light.
 Keep refrigerated at all times when not in use.

Other Materials

Clean glass microscope slides
Plastic culture loop or wooden applicator stick

Procedure

1. Pick a colony from an 18-24 hr culture and place it on a clean glass slide. Avoid carry over of blood agar which can cause false positives.
2. Put one drop of 3% H₂O₂ over the organism on the slide. Do not reverse the order of the procedure as false positive results may occur. Do not mix.
3. Observe for immediate bubbling (gas liberation) and record the result.
4. Discard the slide into a discard container.

Interpretation

Positive test: Immediate bubbling, easily observed (O₂ formed)
Negative test: No bubbling

Precautions

1. Carry over of blood agar must be avoided.
2. Growth for testing must be from an 18-24 hr culture.
3. 3% H₂O₂ is caustic - avoid exposure to skin. If H₂O₂ does get on the skin, immediately flood the area with 70% ethyl alcohol, not water.
4. Aerosols may be released by the bubbling of the O_2.
5. H_2O_2 is unstable and breaks down easily on exposure to light. The solution must be kept refrigerated in the dark.

Quality Control

H_2O_2 is very unstable and should be tested daily or immediately prior to its use.

- Positive: $S. aureus$ (ATCC 25923)
- Negative: $E. faecalis$ (ATCC 29212)

References

CETRIMIDE PSEUDOMONAS SELECTIVE AGAR

Principle

Cetrimide Selective Agar is used for the identification of *Pseudomonas aeruginosa*. Cetrimide is a compound that has germicidal activity against most organisms except *Pseudomonas aeruginosa*. Also pigment production is enhanced on this media.

Procedure

1. Divide the plate into approximately 8 pie shaped divisions.
2. Streak the test organism (pure culture) onto one of the pie shaped divisions.
3. Incubate at 35°C for 18 - 24 hours.

Interpretation

Pseudomonas aeruginosa will grow on this media and will be pigmented a pale green to dark blue-green colour. All other organisms will not grow or will be non-pigmented.

Quality Control

Test with positive and negative controls each time the test is set up.

Positive: *Pseudomonas aeruginosa* (ATCC 27853)
Negative: *Escherichia coli* (ATCC 25922)

Reference

CRYPTOCOCCAL ANTIGEN

Principle

Latex particles coated with anti-cryptococcal globulin (ACGR) reacts with cryptococcal polysaccharide antigen (in CSF or serum) causing a visible agglutination.

Specimen Collection and Processing

5 mL of blood is collected in a serum separator tube and separated by centrifugation. The serum is removed to a vial and refrigerated until testing. Specimens are stored at -20°C after testing.

Spinal fluid is collected in clean, sterile, centrifuge tubes. Specimens are stored refrigerated after testing. **Note:** Fungus culture should also be set up.

Reagents

Meridian CALAS (Cryptococcal Antigen Latex Agglutination System)
- GBDA - Glycine buffered diluent with albumin.
- AGC - Antiglobulin control. Rehydrate with 1.5 mL dH₂O.
- NC - Negative control. Rehydrate with 2.5 mL dH₂O and **inactivate the negative at 56°C for 30 minutes.**
- CAC - Cryptococcal antigen control (Positive control).
- Pronase - Rehydrate with 2.5 mL dH₂O, can be stored at 2°C-8°C for approximately 1 month.
- Detect Latex (ACGR) - Anti-Cryptococcal globulin reagent.
- Control Latex (NGR) - Normal globulin reagent.

Note: Ensure that all reconstituted vials are thoroughly dissolved before use

All reagents are stored refrigerated. Do not interchange reagents with a kit having a different lot number. Allow reagents to warm to room temperature before use. Mix gently before use.
Other Materials
- 100 °C heating block
- 56 °C heating block
- x 0.1 mL pipettes
- Rotator
- Small serologic test tubes
- Test tube rack
- Marking pen
- Applicator sticks
- Eppendorf 5415R Centrifuge

The following are provided by Meridian:
- Capillary pipettes
- Slide cards

Procedure

Specimen preparation

1. Store specimen refrigerated if testing is not done immediately.

2. Inactivate serum by mixing 200 µL of serum and 200 µL of pronase solution in a 12 x 75 mm tube and incubate at 56 °C for 15 minutes. Further inactivate by heating at 100 °C for 5 minutes. This constitutes a 1:2 dilution.

3. Centrifuge CSF at 1000g/3300 rpm in the Eppendorf 5415R centrifuge for 15 minutes. Inactivate the supernatant in a boiling water bath for 5 minutes.
Performing the test

Note: Controls must be run each time a patient specimen is tested.

1. Set up and label the slide as follows:

<table>
<thead>
<tr>
<th>Detec Latex (NGR)</th>
<th>Not Used</th>
<th>Control Latex (ACGR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAC (POS Control)</td>
<td>AGC (Anti-globulin Control)</td>
<td>NC (Negative Control)</td>
</tr>
</tbody>
</table>

 TEST

2. Gently resuspend the latex particles in the Detect Latex (ACGR) and Control Latex (NGR) reagents. Rock each reagent just prior to use.

3. Place one drop of Detect Latex (ACGR) or Control Latex (NGR) into the designated spots.

4. Place 25 μL (one drop) of the cryptococcal antigen control (CAC) into the designated rings. Repeat with the negative control (NC) and anti-globulin control (AGC).

5. Place 25 μL of specimen in the designated rings.

6. Using a separate applicator stick, mix the contents of each ring thoroughly, spreading the contents over the entire surface area.

7. Place the slide on the rotator and rotate at 125 rpm for 5 minutes.

8. Read the reactions immediately.
9. Rate the agglutination as follows: document agglutination results on worksheet. A second technologist must double check/verify all results. Document verification on worksheet.

1+ = fine granulation against a milky background
2+ = small but definite clumps against a slightly cloudy background
3+ = large and small clumps against a clear background
4+ = large clumps against a clear background

Positive Test: \(\geq 2+ \) agglutination (small but definite clumps or larger against a slightly cloudy or clear background)

Negative Test: \(\leq 1+ \) agglutination (fine granulation against a milky background) or a homogenous suspension of particles with no visible clumping

Detect Latex (ACGR) + Positive Control = Positive
Detect Latex (ACGR) + Negative Control = Negative
Control Latex (AGC) + Anti-globulin Control = Positive
Control Latex (AGC) + Positive Control = Negative
Control Latex (AGC) + Negative Control = Negative

10. Patient specimens showing \(\geq 2+ \) agglutination in EITHER Detect Latex or Control Latex should be titrated against both Detect Latex (ACGR) and Control Latex (AGC) reagents.

 a) Prepare two-fold serial dilutions of the specimen using 200 µL of GBDA in each of 8 test tubes labelled as follows:

<table>
<thead>
<tr>
<th>Tube</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum</td>
<td>1:4</td>
<td>1:8</td>
<td>1:16</td>
<td>1:32</td>
<td>1:64</td>
<td>1:128</td>
<td>1:256</td>
<td>1:512</td>
</tr>
<tr>
<td>CSF</td>
<td>1:2</td>
<td>1:4</td>
<td>1:8</td>
<td>1:16</td>
<td>1:32</td>
<td>1:64</td>
<td>1:128</td>
<td>1:256</td>
</tr>
</tbody>
</table>
b) Transfer one drop of each dilution into 2 rings.

c) Add one drop of Detect Latex (ACGR) to one ring of each dilution.

d) Add one drop of Control Latex (NGR) to each of the other rings.

e) Mix using separate applicator sticks.

f) Place the slide on the rotator and rotate at 125 rpm for 5 minutes.

g) Rate the agglutination.

h) If tube #8 gives an agglutination of 2+ or greater, the specimen must be further serially diluted until a titre may be obtained.

Interpretation of results

Negative: Negative result in initial screening tests against Detect Latex (ACGR).

Positive: The titre is reported as the highest dilution showing a 2+ or greater reaction with Detect Latex (ACGR) and negative with Control Latex (NGR).

Positive with Nonspecific Interference:

The titre with Detect Latex (ACGR) is at least 4 fold higher than the titre with Control Latex (NGR). (E.g. Detection Latex titer 1:32, Control Latex titer 1:8 or lower)

Uninterpretable test:

The titre with Detect Latex (ACGR) is less than 4-fold greater than the titre with Control Latex (NGR).
(E.g. Detection Latex 1:32, Control latex 1:16)
Reporting

Telephone all positive reports.

Negative Report: "Cryptococcal antigen not detected by latex agglutination."

Positive Report: "Cryptococcal antigen detected at a titre of ___ by latex agglutination."

Positives with titre \leq1:4 add:

CRLO
> Titre of \leq 1:4 may be due to a very low level of antigen or non-specific cross-reactivity. Results should be interpreted within the context of the clinical signs, symptoms, and history of the patient.

Positive with Nonspecific Interference: "Cryptococcal antigen detected with nonspecific interference."

Uninterpretable Report: "Cryptococcal antigen test invalid due to nonspecific interference."

Quality Control

The pattern of reactions for the controls must be as follows.

<table>
<thead>
<tr>
<th>Detect Latex (ACGR)</th>
<th>+</th>
<th>N/A</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Latex (NGR)</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>CAC</td>
<td>AGC</td>
<td>NC</td>
<td></td>
</tr>
</tbody>
</table>

Failure to obtain this pattern indicates that the test must be repeated and the patient test results cannot be reported.

References

E. coli O157 LATEX TEST (OXOID)

Principle

The Latex test will demonstrate by slide agglutination, *E. coli* strains possessing the O157 antigen. Sorbitol MacConkey Agar (SMAC) should be used as the primary screen. Non-sorbitol fermenting colonies (NSF) are tested with the latex reagents, to determine if the isolate belongs to the O157 serogroup, and is therefore a potential vero-cytotoxin (VT) producing strain.

Reagents

- DR621M Test Latex - consists of latex particles sensitized with specific rabbit antibody reactive with the O157 antigen.
- DR622M Control Latex - consists of latex particles sensitized with pre-immune rabbit globulins.
- DR623M - positive control suspension
- DR624M - negative control suspension

Storage

Do not freeze. Store at 20°C - 8°C. Do not use kit beyond the expiry date.

Procedure

NSF colonies may be taken from SMAC plates or alternatively NSF isolates may be inoculated onto non-selective agar media for testing.

For best results, sub NSF to a Blood Agar plate prior to testing.

It is necessary to test up to 10 separate NSF colonies to ensure a high probability of detection from mixed cultures.

1) Bring the latex reagents to room temperature. Make sure the latex suspensions are mixed by vigorous shaking. Expel any latex from the dropper pipette for complete mixing.
2) Dispense 1 drop of the Test latex onto a circle of the black slide. Place it close to the edge of the circle.
3) Add some loopfuls or a pasteur pipette drop of saline to the circle. Ensure that the latex and saline do not mix at this stage.

4) Using a loop, pick off a portion of the colony to be tested and carefully emulsify in the saline drop.

5) Mix the Test latex and suspension together and spread to cover most of the reaction area using the loop. Flame the loop.

6) Rock the slide in a circular motion, observing for agglutination. Do not rock the card for more than 1 minute and do not use a magnifying glass.

7) If no agglutination occurs, then proceed to test other NSF colonies if these are present.

8) If agglutination with the test reagent does occur, then it is necessary to test a further portion of the colony with the control reagent to ensure that the isolate is not an auto-agglutinating strain.

9) When finished, dispose of the reaction slide into disinfectant.

Interpretation

a) Positive result - Agglutination of the Test latex occurs within 1 minute. No agglutination of the Control latex. *Perform biochemical tests to confirm that the organism is an *E. coli* strain.

b) Negative result - no agglutination of the Test latex.

c) Non-interpretable result - clumping of the Control latex.

References

GERM TUBE TEST

Principle

This is a rapid test for the presumptive identification of *C. albicans*.

Reagents

Bovine serum

A small volume to be used as a working solution may be stored at 2 to 8°C. Stock solution can be dispensed into small tubes and stored at -20°C.

Other Materials

Clean glass microscope slides
Glass coverslips
Vitek tubes (13 x 100 mm)
Pasteur pipettes

Procedure

1. Put 3 drops of serum into a small Vitek tube.
2. Using a Pasteur pipette, touch a colony of yeast and gently emulsify it in the serum. The pipette can be left in the tube.
3. Incubate at 37°C for 2-4 hours but no longer.
4. Transfer a drop of the serum to a slide for examination.
5. Coverslip and examine microscopically using x 40 objective.

Interpretation

Germ tubes are appendages half the width and 3 to 4 times the length of the yeast cell from which they arise. There is no constriction between the yeast cell and the germination tube.

Positive test: presence of short lateral filaments (germ tubes)

Negative test: yeast cells only
Precaution

C. tropicalis may form pseudohyphae which may be falsely interpreted as germ tubes.

Quality Control

Set up known controls each time a test is run.

- Positive: *C. albicans* (ATCC 10231)
- Negative: *C. tropicalis* (ATCC 13803)

Reference

INDOLE TEST

Principle

Bacteria that produce the enzyme tryptophanase will deaminate tryptophan to indole, pyruvic acid and ammonia in the presence of a co-enzyme pyridoxal phosphate.

Indole combines with Ehrlich's / Kovac's reagent to form a red-coloured complex.

Materials

Test A: Filter paper strips impregnated with Ehrlich's reagent.

Test B: Kovac's reagent

2% Tryptone broth (Difco, Oxoid)

Store Kovac’s reagent at 2-8°C

Method

A: Filter paper strips are suspended over tubes of ONPG / PAM media, and incubated at 35°C overnight.

Interpretation

Positive test - development of red colour on the strip

Negative test - white-yellow colour

B: 1. Inoculate the tryptone broth, and incubate at 35°C overnight

2. Add a few drops of Kovac's reagent to the broth.

Interpretation

Positive test - red colour in the upper layer

Negative test - light-yellow colour in the upper layer
Quality Control

Test the following positive and negative controls weekly:

Positive: *Proteus vulgaris* (ATCC 13315)
Negative: *Klebsiella pneumoniae* (ATCC 13883)

Reference

KOEHLER ILLUMINATION

The microscope should be set up using Koehler illumination for all parasitology examinations. This ensures that all the light from the lamp is being focused onto the specimen and that the field to be examined is evenly illuminated.

Procedure

1. Turn the lamp on.
2. Bring the condenser up to the top position, with the top lens swung in.
3. Open the condenser diaphragm.
4. Place a specimen on the stage and focus with the 10x objective.
5. Close the field diaphragm.
6. Lower the condenser until the edge of the field diaphragm is in sharp focus.
7. Center the field diaphragm image with condenser centering screws.
8. Open the field diaphragm until the edge just disappears from view.
9. Remove one eyepiece.
10. Looking down the eyepiece tube, close the condenser diaphragm until the illumination is approximately 2/3 full.
11. Replace the eyepiece.
12. Repeat for each objective lens when changed.

Reference

KOH STRING TEST

Principle

The formation of a string (DNA) in 3% KOH indicates that the isolate is a gram negative organism.

Reagents

3% KOH

Other Materials

Glass slides
Culture loop

Procedure

1. Place a drop of 3% KOH onto a glass slide.
2. Emulsify in KOH a loopful of the culture from a BA incubated for 18-24 hr.
3. Continue to mix the suspension for 60 sec and by slowly lifting the loop; observe for the formation of a string.

Interpretation

Positive: formation of a string within 60 seconds

Negative: failure to form a string

Precautions

1. False positive and false negative results may occur.

Quality Control

Known controls should be tested each time the test is performed.

Positive: *P. aeruginosa* (ATCC 27853)
Negative: *S. aureus* (ATCC 25923)
References

LAP TEST

Principle

LAP (Leucine-β-naphthylamide) impregnated disks serve as a substrate for the detection of Leucine aminopeptidase. Following the hydrolysis of the substrate by the enzyme the resulting β-naphthylamine produces a red colour upon the addition of cinnamaldehyde reagent. This test is usually used, in conjunction with other tests, for the identification of streptococci and other catalase negative gram positive cocci.

Reagents

LAP discs
Cinnamaldehyde reagent (0.01% p-dimethylamino-cinnamaldehyde)
(Disks and reagents are both in LAP kit, Store at 2-8°C)
Glass slide
Inoculating loop
Forceps
Sterile distilled water

Procedure

1. Place a LAP disk onto a glass slide and moisten it with one drop of sterile distilled water.
2. Rub a loopful of the culture onto the moistened disk holding it in place with sterile forceps.
3. Leave at room temperature for 5 minutes.
4. After 5 minutes, add 1 drop of cinnamaldehyde reagent.

Interpretation

Positive: red colour within one minute
Negative: no colour change or slight yellow colour

Quality Control

Test known positive and negative controls each time an unknown is run.

Positive: E. faecalis (ATCC 29212)
Negative: Leuconostoc (ATCC 8923)
Reference

Remel LAP test package insert July 2010.
MOTILITY TEST MEDIUM

Principle

Motility Test Medium is a semi-solid agar designed to demonstrate motility by diffusion.

Motility Test Medium is a modification of the formula of Tittsler and Sandhoizer. The medium contains small amounts of agar and gelatin, as well as triphenyltetrazolium chloride (TTC). TTC is a soluble compound which is taken up by the bacterial cells. Once the substance has been absorbed by the bacteria, it is reduced, releasing the acid formazan, a highly pigmented red, insoluble compound.

Organisms are stabbed into the medium with an inoculating wire. If the organisms are motile, they will diffuse into the soft medium laterally from the line of inoculation, resulting in a diffuse, pink colour throughout the medium. Non-motile organisms grow along the line of inoculation only, producing a pinkish-red line with no diffusion.

Storage

Upon receipt store at 2 - 8°C, away from direct light. Media should not be used if there are signs of contamination, deterioration (shrinking or discoloration), or if the expiration date has passed.

Limitations

Motility tests often show a false-negative reaction. The organism may be weakly motile, or the flagella may be damaged due to heating, shaking, or other trauma. Hanging drop motility may be performed from an inoculated tryptone broth incubated for 2-4 hours to confirm motility results. Consult appropriate microbiological texts for procedure.

TTC may be inhibitory to some fastidious bacteria.

Most motility of bacteria should be interpreted at 35°C: however, certain bacteria such as Yersinia enterocolitica demonstrate the best motility at 25°C.

Organisms that require oxygen for growth, such as Pseudomonas aeruginosa, will produce a spreading film on the surface of the medium, and will not fan out from the inoculation line where oxygen is depleted.
Procedure

1. Tube Method

Prior to inoculation, the medium should be brought to room temperature. Inoculate selected colonies of a pure 18 to 24 hour culture, or from a turbid broth culture 4-8 hours old. Using a straight needle, stab the centre of the medium about 1/4" from the top. Incubate the tubes with the caps loose at 35°C (see "Limitations") for 18 - 24 hours. Observe for motility.

2. Plate Method

If using a multipoint inoculation system, make a pour plate form the 18 ml tube by gently melting the agar in a boiling water bath and dispensing the liquid medium into a sterile petri dish. Prepare the inoculum by touching the top of one or two well isolated colonies and inoculating into a broth. Stab the inoculum into the medium using the modified pins of a replicator or by using a straight needle. Incubate aerobically at 35°C (see "Limitations") for 16-18 hours. Examine for the presence of a pink diffusion from the point of inoculation.

Interpretation

Positive: A diffuse pink colour occurring throughout the medium.
Negative: A pinkish red line at the stab site with no diffusion.

Quality Control

Test the following positive and negative control organisms on receipt of each shipment:

Positive: *Escherichia coli* (ATCC 25922)
Negative: *Klebsiella pneumoniae* (ATCC 13883)

References

MUG TEST (PGUA)

Principle

If an organism produces the enzyme glucuronidase it will break down the substrate ortho-nitrophenyl-beta-glucuronide liberating the ortho-nitrophenyl producing a yellow colour. This test is used, in conjunction with others, for the identification of E. coli.

Reagents and Materials

- PGUA tablets – Store at 2-8°C
- 13x100mm tubes
- Tryptone water
- Kovac's reagent – Store at 2-8°C

Procedure

1. Prepare a dense suspension of the test organism (lactose-fermenter only) in 0.25 mL of the tryptone water.
2. Add 1 PGUA tablet to the tube.
3. Incubate at 36°C for 4 hours.
4. Examine the tube for development of a yellow colour.
5. Add 1 drop of Kovac's Indole reagent and observe for the development of a red colour.

Interpretation

<table>
<thead>
<tr>
<th>MUG positive: Yellow colour</th>
<th>MUG negative: Colourless</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indole positive: Red colour after addition of Kovac's</td>
<td>Indole negative: Kovac's remains yellow</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MUG</th>
<th>INDOLE</th>
<th>INTERPRETATION / ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>report as E. coli</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>set up VITEK Identification</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>set up VITEK Identification</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>set up VITEK Identification</td>
</tr>
</tbody>
</table>
Precautions

1. *E. coli* O157:H7 and non-motile strains which produce verotoxin is MUG test negative.

Quality Control

The following controls are tested weekly:

<table>
<thead>
<tr>
<th></th>
<th>MUG</th>
<th>INDOLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli (ATCC 25922)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>P. mirabilis (ATCC 12453)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Reference

1. Prolab package insert
ONPG TEST

Principle

This test is used to demonstrate the presence or absence of the enzyme β-galactosidase using the substrate ortho-nitrophenyl-D-galactopyranoside in order to differentiate lactose-fermenting from non-lactose-fermenting organisms and in the identification of *B. cepacia*.

Reagents

ONPG disks (Store refrigerated 2-8°C)
Sterile saline

Other materials

Sterile tube (13 x 100 mm)
Bacteriology loop
Sterile graduated Pasteur pipette

Procedure

1. Place an ONPG disk into a sterile tube and add 0.2 mL saline.
2. Heavily inoculate the tube with a loopful of the test isolate.
3. Incubate at 35°C for up to 4 hours.

Interpretation

Positive: yellow colour within 4 hours
Negative: colourless at 4 hours

Precautions

1. A heavy inoculum is necessary to obtain a high concentration of enzyme.

Quality Control

Test with known positive and negative controls each time the test is performed.
Positive: *E. coli* (ATCC 25922)
Negative: \(P. \text{ vulgaris}\) (ATCC 13315)

References

ONPG-PHENYLALANINE-MOTILITY MEDIUM (ONPG-PAM)

Principle

This test is used to determine an organism's motility, its ability to ferment lactose and produce phenylalanine deaminase. The medium is primarily used as a screening procedure for the detection of enteric pathogens.

Reagents

ONPG-PAM tube
10% Ferric chloride

Other materials

Culture wire

Procedure

1. Inoculate the ONPG-PAM tube by stabbing the centre of it to the bottom of the tube.
2. Incubate the tube in O₂ at 35°C X 18 hours.
3. Read the tube for ONPG, motility and indole.
4. Add 2 drops of 10% ferric chloride solution and read the phenylalanine result.

Interpretation

ONPG: Positive: yellow
 Negative: no colour change

Motility: Positive: diffuse growth from line of inoculum
 Negative: growth does not spread from line of inoculum

Phenylalanine (PPA): Positive: green
 Negative: yellow/brown
Quality Control

Test with control organisms each time a new batch of media is prepared.

<table>
<thead>
<tr>
<th></th>
<th>ONPG</th>
<th>Motility</th>
<th>PPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>K. pneumoniae (ATCC 13883)</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P. vulgaris (ATCC 13315)</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

References

OPTOCHIN SENSITIVITY TEST

Principle

This test is used to determine an organism’s susceptibility to the chemical Optochin (ethylhydrocupreine hydrochloride) for the presumptive identification of *S. pneumoniae*.

Reagents

Bacto Optochin Disks (5 µg disk) Store refrigerated at 2-8°C
5% Sheep Blood Agar (BA)

Other Materials

Culture loop
Forceps
Cotton swabs

Procedure

1. Inoculate the suspected alpha haemolytic colony onto a BA to obtain confluent growth.
2. Using aseptic technique place an Optochin disk onto the surface of the inoculated agar. Press down with forceps.
3. Incubate at 35°C in CO₂ for 18-24 hours.

Interpretation

Susceptible: Zone of inhibition of at least 14 mm
Resistant: Zone of inhibition less than 14 mm

Quality Control

Test with known susceptible and resistant control strains weekly:

- Susceptible: *S. pneumoniae* (ATCC 6303)
- Resistant: Viridans Strep. (LPTP 8610)
References

2. BD BBL package insert, July 2010.
ORNITHINE DECARBOXYLASE

Principle

This test is used to determine an organism's ability to decarboxylate or hydrolyze the amino acid - ornithine, forming an amine - putrescine that produces an alkaline pH. It is primarily used for the differentiation of *S. lugdunensis* from other coagulase-negative staphylococci.

Reagents

Møller’s ornithine Decarboxylase (1% ornithine) with bromcresol purple. OXOID. Store refrigerated 2-8°C.

Mineral Oil

Other Materials

Culture loop

Procedure

1. Inoculate one or two colonies of a 18 to 24 hour culture of staphylococci into the ornithine decarboxylase tube.
2. Overlay the inoculated tube with approximately 1 mL of mineral oil.
3. Incubate at 35°C in O₂ for 18-24 hours.
4. Observe for purple colour.

Interpretation

Positive: Turbid, purple colour (alkaline)
Negative: Bright yellow colour (acidic)

Quality Control

Test with known positive and negative control strains weekly:

- Positive: *S. lugdunensis* (ATCC 700328)
- Negative: *S. aureus* (ATCC 25923)
References

OXIDASE (API STRIP)

Principle

This test determines whether an isolate produces oxidase enzymes. This test is mainly used, in conjunction with other tests, for the identification of gram negative organisms and *Bacillus* species.

Reagents

API Oxidase Reagent
1. 0.2% Aqueous ascorbic acid: Reconstitute ascorbic acid with 25 ml sterile distilled water. This solution may be refrigerated 2-8°C for up to 28 days. The expiry date must be written on the bottle.

2. N,N,N,-Tetramethyl-p-phenylenediamine-dihydrochloride: Reconstitute with 5 ml of the 0.2% aqueous ascorbic acid. It is recommended that this be reconstituted 4-5 hours before use. This solution may be refrigerated for up to 7 days at 2 - 8°C. The expiry date must be written on the bottle.

Other Materials

API filter paper
API oxidase tray
Wooden applicator stick

Procedure

1. Place a filter paper in the oxidase tray and moisten entire paper with oxidase reagent. Allow to air dry. May be used for up to 1 week
2. Transfer a portion of the colony to the filter paper using a wooden applicator stick.
3. Observe for 30 seconds.

Interpretation

Positive: Development of a purple colour within 30 seconds
Negative: No colour change

Precautions
Nichrome wire may cause false positive reactions.
Quality Control

Test daily with known positive and negative controls.

Positive: *P. aeruginosa* (ATCC 27853)
Negative: *K. pneumoniae* (ATCC 13883)

References

OXIDASE (SPOT TEST DROPPER)

Principle

This test determines whether an isolate produces oxidase enzymes and is used for the identification of Neisseria species isolated from primary plates.

Reagents

Spot Test dropper. Store at room temperature

Procedure

1. Hold the dropper upright and squeeze gently to crush the glass ampule inside the dispenser.

2. Add 2 - 3 drops directly to the colonies to be tested and observe for 30 seconds.

Interpretation

Positive: Development of a purple colour within 30 seconds

Negative: No colour change

Note: Colonies which are positive must be subcultured immediately since prolonged exposure will result in death of the organisms.

Quality Control

Test daily with known positive and negative controls.

- P. aeruginosa (ATCC 27853) : positive
- E. coli (ATCC 25922) : negative

References

PASTOREX STAPH PLUS TEST

Principle

A rapid slide latex agglutination test for the detection of clumping factor, capsular polysaccharide and protein A produced by most strains of *S. aureus*.

Reagents and Materials

Pastorex test latex suspension (store refrigerated 2-8°C)
Disposable reaction cards
Plastic stick

Procedure

1. Confirm the identification of a suspect Staphylococcus by Gram stain and catalase test.
2. Allow the latex reagent to warm to room temperature before use.
3. Shake the reagent so that all of the particles are re-suspended.
4. Dispense one drop of latex test reagent in one of the circles on the reaction card.
5. Dispense one drop of negative control reagent in another circle on the card.
6. Emulsify 1 to 3 colonies into the test latex with a loop for 10 seconds.
7. Repeat step 6 for the negative control reagent.
8. Gently rock the card for 30 seconds and look for clumping.
9. Discard the card into a discard container.

Interpretation

Positive test: Clumping within 30 seconds with the test latex particles only.

Negative test: No clumping in either latex.

Uninterpretable test: Clumping in the negative control.

Precautions

1. False positive results may occur after 40 seconds.
2. False positive agglutination can occur with organisms other than staphylococci.
Quality Control

Test known positive and negative controls daily.

Positive: *S. aureus* (ATCC 29213)
Negative: *S. epidermidis* (ATCC 12228)

References

PHADEBACT MONOCLONAL GC

Principle

Phadebact Monoclonal GC is a co-agglutination test. It is intended for the identification of *Neisseria gonorrhoeae* and to distinguish between serogroups WI and WII/WIII. The WI and WII/WIII reagents are composed of two pools of murine monoclonal antibodies reacting with group specific parts of a membrane protein called Protein I. The monoclonal antibodies are bound to Protein A on the surface of non-viable staphylococci. When a sample containing *N. gonorrhoeae* is mixed with the reagent, specific antigens on the surface of the gonococci bind to the corresponding specific antibodies. A co-agglutination lattice is formed.

Reagents and Materials

WI Gonococcal Reagents (blue) - Store at 2 - 8°C
WII/WIII Reagents (blue) - 1 vial each - Store at 2 - 8°C
Disposable slides
Disposable droppers
0.5ml saline in a tube

Procedure

Using suspected colonies of *Neisseria gonorrhoeae* make a light suspension in 0.5ml saline
Heat the suspension in boiling water for 5 minutes
Let cool to room temperature
Dispense one drop of the WI and one drop of the WII/WIII onto slide
Dispense one drop of the heat treated suspension to the WI and one drop to the WII/WIII
Using fresh loop for each, mix gently and thoroughly
Rock the slide and read within 1 minute. Observe for coagglutination

Interpretation

Positive test: Coagglutination within 1 minute in either WI or WII/WIII
Negative test: No coagglutination in either WI or WII/WIII

Quality Control:
Positive: *Neisseria gonorrhoeae* ATCC 19424 (serogroup WI)
N. gonorrhoeae ATCC 49498 (serogroup WII/WIII)

Negative: *Neisseria meningitidis* ATCC 13090

Note:
By simultaneous use of both reagents (WI and WII/WIII) in testing an unknown sample, there is a built-in negative control since mixed infections are rare. If the unknown bacteria belong to *N. gonorrhoeae* group WI, co-agglutination occurs with the WI. Gonococcal Reagent and the WII/III Gonococcal Reagent will show a negative result as per manufacturer’s guidelines.

Reference:

Phadebact Monoclonal GC

MKL Diagnostics package insert March 2012.
PLATE STREAKING METHODS

Blood Agar and MacConkey Agar for Urine Cultures

1 uL disposable loop
Inoculate in one continuous streak down the middle of the plate. With the same loop, streak out the entire plate at 90° to the initial inoculum. Streak a minimum of 15 lines.

![Blood Agar and MacConkey Agar](image)

Martin-Lewis Agar

Inoculate plate with specimen swab in a "Z" pattern across the plate (with continuous rotation of the swab while inoculating). Streak the entire plate with a sterile loop at 90° to the initial inoculum. Streak a minimum of 15 lines.

![Martin-Lewis Agar](image)
Manual Streaking

Inoculate specimen with swab or loop onto the entire first quadrant of the agar plate. Use a sterile loop and streak out the second, third and fourth quadrants as per diagram:

1. Use a sterile loop

Growth Quantitation:

- + / -
- 1 +
- 2 +
- 3 +

Isoplater Streaking
PRO-AMP GLU-AMP TESTS

Principle

Rapid chromogenic tests for the identification of pathogenic Neisseria

Reagents

Pro-Amp tablets
Glu-Amp tablets
Fast Blue BB solution
Sterile Saline

Other Materials

Sterile Tubes (13 x 100mm)

Procedure

1. Suspend the growth from Choc media in 2 tubes of 0.25 ml saline to achieve the turbidity > #2 McFarland standard.
2. Add 1 tablet to the respective tube.
3. Incubate at 36°C x 4 hours.
4. After incubation add 3 drops of Fast Blue BB solution to each tube and read results after 10 minutes.

Interpretation

Positive: Orange/salmon colour
Negative: Yellow colour

<table>
<thead>
<tr>
<th>Organism</th>
<th>Glu-Amp</th>
<th>Pro-Amp</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. gonorrhoeae</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>N. meningitidis</td>
<td>+</td>
<td>v</td>
</tr>
</tbody>
</table>

Quality Control

Test with control organisms when test is run:
N. gonorrhoeae (ATCC 43069)
N. menigitidis (ATCC 13090)

Reference

PYR TEST

Principle

PYR (L-pyrrolidonyl-β-naphthylamide) impregnated disks serve as a substrate for the detection of pyrrolidonyl peptidase. Following the hydrolysis of the substrate by the enzyme the resulting β-naphthylamine produces a red colour upon the addition of cinnamaldehyde reagent. This test is used, in conjunction with others, for the identification of catalase negative, gram positive cocci including Enterococci and Group A Streptococci.

Reagents

Dry slide PYR
Cinnamaldehyde reagent (0.01% p-dimethylamino-cinnamaldehyde)
(Slide and reagents are both in PYR kit, store at room temperature.)
Glass slide
Inoculating loop
Forceps
Sterile distilled water

Procedure

1. Aseptically cut a piece of dry slide and place on a glass slide. Do not touch the reaction area.
2. Moisten it with one drop of sterile distilled water.
3. Rub a loopful of the culture onto the moistened slide holding it in place with sterile forceps.
4. Leave at room temperature for 2 minutes.
5. After 2 minutes, add 1 drop of cinnamaldehyde reagent.

Interpretation

Positive: Pink or cherry red colour within one minute

Negative: No colour change or slight yellow colour

Quality Control

Test knows positive and negative controls each time an unknown is run.

Positive: Group A streptococcus (ATCC 19615)
Negative: Group B streptococcus (ATCC 13813)

Reference
BD BBL Dryslide PYR package insert June 2010.
QUANTITATION OF ORGANISMS & CELLS ON SMEARS & CULTURE

Microscopic:

Gram Smear:

Report as:

\[\begin{align*}
\pm & \quad \text{<1 per oil immersion field} \\
+ & \quad \text{1 - 5 per oil immersion field} \\
++ & \quad \text{5 - 10 per oil immersion field} \\
+++ & \quad \text{>10 per oil immersion field}
\end{align*}\]

Fluorochrome Smear for Mycobacterium

Report as:

\[\begin{align*}
<3 & \quad \text{per smear} \\
3-9 & \quad \text{per smear} \\
1-9 & \quad \text{per ten 250X fields} \\
1-9 & \quad \text{per 250X field} \\
10-90 & \quad \text{per 250X field} \\
>90 & \quad \text{per 250X field}
\end{align*}\]

Culture:

Report as:

\[\begin{align*}
\pm & \quad \text{few colonies in primary inoculum} \\
+ & \quad \text{confluent growth in primary inoculum} \\
++ & \quad \text{growth up to 2nd quadrant} \\
+++ & \quad \text{growth in or >3rd quadrant}
\end{align*}\]

Size of colonies:

\[\begin{align*}
lg & \quad \text{- large} \\
med & \quad \text{- medium} \\
sm & \quad \text{- small} \\
tiny & \quad \text{- tiny} \\
 ppt & \quad \text{- pinpoint}
\end{align*}\]
References

- Acid-fast Bacilli (AFB): Change in Reporting the Enumeration of AFB Smears, Labstract, Ontario Public Health Laboratories, January 2007
RapID ANA II SYSTEM

Principle

The RapID ANA II System is a qualitative micromethod employing conventional and chromogenic substrate for the identification of medically important anaerobic bacteria of human origin.

The tests used in it are based upon the microbial degradation of specific substrate detected by various indicator systems. The reactions are a combination of conventional tests and single-substrate chromogenic tests.

Materials

1. RapID ANA II panels – Store at 2 - 8°C
2. Suspension fluid – Store at 2 - 8°C
3. Kovacs spot indole reagent – Store at 2 - 8°C
4. RapID ANA II reagent – Store at 2 - 8°C
5. RapID ANA ID forms

Procedure

Make an equivalent McFarland #3 turbidity suspension of 18-24 hours AnO₂ culture (not more than 72 hours) in the supplied suspension fluid. Mix it thoroughly - can be used up to 15 minutes. Inoculate an agar (BA FAA) plate for purity and incubate for 24 hours anaerobically. Peel the lid off the panel marked "peel to inoculate". Using the Pasteur pipette, transfer the entire contents into the right upper corner of the panel. Seal the panel. Level the contents in the panel and slowly tilt the panel so that every chamber receives an equal amount of suspension. Incubate the panel at least four hours (not more than six hours) in non-CO₂ incubator at 35-37°C. After the incubation period, read the panel prior to adding the reagents and write results on the ID form. Add the reagents as per instructions. Allow 30 seconds but not more than two minutes. Read it and score on the form.

Interpretation and Identification

Please follow the guidelines from the manufacturer and see http://remel.com/eric/ for identification code.
See seniors for login information.

See RapID ANA II System Insert #iii08-1/94.
RapID MGP TEST

Principle

Rapid MGP Medium is a 5 hour test for the differentiation of *Enterococcus faecium* and *E. faecalis* from *Enterococcus gallinarum* and *E. casseliflavus* based on the ability to acidify the carbohydrate methyl-glucopyranoside (MGP).

Reagents

Rapid MGP Medium (Hardy Diagnostics) Store at 2-8°C
Bacteriology loop

Procedure

1. Using a sweep of colonies from an 18-24 hour pure culture of the organism to be tested, stab the MGP media with the loop. There should be a visible cell paste on the loop as the media is inoculated.

2. Incubate aerobically at 35°C for 5 hours.

3. Observe for the development of a yellow colour along the stab line indicating a positive test.

4. Reincubate weak reactions for 24 hours.

Interpretation

Positive: yellow colour along stab line
Negative: colour remains blue

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E. casseliflavus</td>
<td>+</td>
</tr>
<tr>
<td>E. gallinarum</td>
<td>+</td>
</tr>
<tr>
<td>E. faecalis</td>
<td>-</td>
</tr>
<tr>
<td>E. faecium</td>
<td>-</td>
</tr>
</tbody>
</table>
Quality Control

Positive and negative controls are run each time the test is set up.

Positive: \textit{E. casseliflavus} (ATCC 12755)

Negative: \textit{E. faecalis} (ATCC 19966)

Reference

RapID VP TEST

Purpose

To aid in the identification of *S. anginosus group*

Media

MR - VP broth – Store at 2-8°C

Procedure

1. Transfer approximately 0.2 ml of VP broth into a sterile 13 x 100 test tube.
2. Using a sterile inoculating wire inoculate the test organism heavily into the broth.
3. Incubate the tube at 35°C for 5 hours.
4. After incubation add 1 drop of alpha-naphthol and 1 drop of 40% KOH.
5. Shake the tube gently for one minute to expose the medium to air. Allow 10-15 minutes for reaction to develop.

Interpretation

- Positive - Red colour
- Negative - No colour change within 10-15 minutes

Precautions

The order of adding reagents are important; alpha-naphthol followed by 40% KOH.

Quality Control

Quality control must be performed on each new lot of Rapid VP reagent before being put into general use and once weekly with the following organisms:

- *S. pyogenes* (ATCC 19615): Negative
- *Streptococcus* species Group F (ATCC 12392): Positive
Reference

SALMONELLA SEROLOGICAL AGGLUTINATION TEST

I. Introduction:

Remel Salmonella serological agglutination is a slide agglutination test using somatic (O), flagella (H) or capsular (Vi) antisera to aid in the identification of Salmonella species. Antibodies in the serum will agglutinate with homologous bacterial antigens from culture colonies.

II. Reagent:

1. Somatic (O) antisera
2. Flagella (H) antisera
3. Capsular (Vi) antisera

Sera should be stored at 2 to 8°C and used until the expiration date shown on the bottle label.

On storage, some sera become slightly turbid and does not necessarily indicate deterioration and normally will not interfere with results. Gross turbidity indicates contamination and should be discarded.

III. Materials:

1. Glass slide
2. Bacteriology loop
3. Sterile saline
4. China marker

IV. Procedure:

Testing should be performed on suspect colonies from a fresh culture (18-24 hours) sub cultured on a non-selective agar e.g. BA, TSI. Do not use MAC or HEK plates to perform agglutination test.

1. With a China marker, divide two slides into two sections or make 2 circles.
2. On the first slide, mark the first section as “O”, the second as “H”. On the second slide, mark the first section as “Vi” and the second as a negative saline control.

3. Put one drop of each reagent in their respective section. Add a drop of saline to the negative control section.

4. Using a clean loop for each section, emulsify the organism into each section to give a homogenous, fairly dense suspension.

5. Rock the slide gently and observe for agglutination using indirect lighting over a dark background. Agglutination should be strong and clearly visible within one minute.

6. If there is agglutination in the saline control, the test in invalid.

V. Interpretation of results

<table>
<thead>
<tr>
<th>Somatic (O) antisera</th>
<th>Flagella (H) antisera</th>
<th>Capsular (Vi) antisera</th>
<th>Saline</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>Possible Salmonella typhi</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>Possible Salmonella typhi</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>Probable Salmonella spp, not typhi</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Probable Salmonella spp, not typhi</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>Possible Salmonella typhi</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>Possible Salmonella typhi</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Not Salmonella spp</td>
</tr>
<tr>
<td>+/-</td>
<td>+/-</td>
<td>+/-</td>
<td>+</td>
<td>INVALID</td>
</tr>
</tbody>
</table>

Note: Cross-reactions may occur with Enterobacteriaceae.
See Vitek-MS-V2-speciesList Created-Translatedlist for reporting isolate species

VII. Quality Control:

Quality control testing should be run with each shipment and on new kit lot number received and performs QC weekly.

<table>
<thead>
<tr>
<th>QC Organisms</th>
<th>Somatic (O) antisera</th>
<th>Flagella (H) antisera</th>
<th>Capsular (Vi) antisera</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmonella typhimurium ATCC#14028</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Salmonella paratyphi ATCC#9150</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>
VIII. Reference:

Remel Salmonella Polyvalent Agglutination Sera insert, June 2013.
SHIGELLA SEROLOGICAL TESTING

I. Introduction:

Serological testing is performed to identify Shigella species. Testing is performed by a slide agglutination test using (O) antisera.

II. Reagent:

Remel Shigella Polyvalent Agglutination Sera:
1. *Shigella dysenteriae* polyvalent (1-10)
2. *Shigella flexneri* polyvalent (1-6, x, y)
3. *Shigella sonnei* phase 1 & 2
4. *Shigella boydii* polyvalent 1 (1-6)
5. *Shigella boydii* polyvalent 2 (7-11)
6. *Shigella boydii* polyvalent 3 (12-15)

Sera should be stored at 2-8°C and used until the expiration date shown on the bottle label.

III. Materials:

1. Glass slide
2. Bacteriology loop
3. Sterile saline
4. China marker

IV. Procedure:

Testing should be performed on suspect colonies from a fresh culture (18-24 hours) sub cultured on a non-selective agar e.g. BA, TSI. Do not use MAC or HEK plates to perform agglutination test.

1. With a China-marker, divide 6 slides into two. Make a circle in each section.
2. Put a drop of saline in each circle.
3. Using a loop, emulsify the organism in each drop of saline to give a homogenous, fairly dense suspension.
4. Add one drop of undiluted antiserum of each sera to one of the suspensions and mix. The last suspension serves as a control.
5. Rock the slide gently and observe for agglutination using indirect lighting over a dark background. Agglutination should be strong and clearly visible within one minute.
6. If there is agglutination in the saline control, the test is invalid.
7. If the isolate is biochemically a *Shigella* species, but fails to agglutinate with the grouping sera, send isolate to PHOL for confirmation.
V. Interpretation of Results:

<table>
<thead>
<tr>
<th>Shigella dysenteriae polyvalent (1-10)</th>
<th>Shigella flexneri polyvalent (1-6, x, y)</th>
<th>Shigella sonnei phase 1 & 2</th>
<th>Shigella boydii polyvalent 1 (1-6)</th>
<th>Shigella boydii polyvalent 2 (7-11)</th>
<th>Shigella boydii polyvalent 3 (12-15)</th>
<th>Saline</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Shigella dysenteriae (1-10)</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Shigella flexneri (1-6, x, y)</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Shigella sonnei phase 1 & 2</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Shigella boydii (1-6)</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>Shigella boydii (7-11)</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>Shigella boydii (12-15)</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Negative</td>
</tr>
<tr>
<td>+/-</td>
<td>+/-</td>
<td>+/-</td>
<td>+/-</td>
<td>+/-</td>
<td>+/-</td>
<td>+/-</td>
<td>INVALID</td>
</tr>
</tbody>
</table>
VI. Quality Control:

Quality control testing should be run with each shipment and on new kit lot number received and performs QC monthly.

<table>
<thead>
<tr>
<th>QC Organisms</th>
<th>Shigella dysenteriae polyvalent (1-10)</th>
<th>Shigella flexneri polyvalent (1-6, x, y)</th>
<th>Shigella sonnei phase 1 & 2</th>
<th>Shigella boydii polyvalent 1 (1-6)</th>
<th>Shigella boydii polyvalent 2 (7-11)</th>
<th>Shigella boydii polyvalent 3 (12-15)</th>
<th>Saline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shigella dysenteriae ATCC 13313</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Shigella flexneri ATCC 12022</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Shigella sonnei ATCC 25931</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Shigella boydii ATCC 9207</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Saline Control</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

VII. Reference:

Oxoid Remel *Shigella* Polyvalent Agglutination Sera Package Insert.
SHIGELLA WELLCOLEX LATEX AGGLUTINATION

I. **Introduction:**

Wellcolex Colour Shigella provides a simple, rapid qualitative procedure for detection and species identification of shigella present on solid culture media.

II. **Reagent:**

1. Latex reagent 1
2. Latex reagent 2
3. Red Positive Control
4. Blue Positive Control

Reagent kit to be stored at 2 to 8°C and used until the expiration date shown on the box.

III. **Materials:**

Materials provided:
1. Disposable sampling sticks
2. Disposable reaction cards
3. Disposable sample dispensers
4. Disposable suspension tubes

Material required but not provided:
1. 0.45% sterile saline
2. The test should be performed on a flatbed rotator operating at approximately 80 rpm.

IV. **Procedure:**

1. Use disposable sample dispensers dispense 0.5 ml saline in the disposable suspension tubes.
2. From an overnight culture pick few colonies average-sized (1 to 2 mm) suspected Shigella colonies from the culture plate using the flat end of a sampling stick and emulsify the bacteria in the saline.
3. Resuspend latex reagent 1 and 2 by shaking vigorously for a few seconds.
Dispense one drop of each latex reagent into a separate circle on a reaction card without bubbles.
4. Transfer one drop of bacterial suspension to each of the two circles.
5. Using a sampling stick, mix the contents of each circle and spread to cover the whole area of the circle.
6. Place the card on the flat bed rotator and run at 80 ± 5 rpm for 2 minutes.

V. Interpretation of results

<table>
<thead>
<tr>
<th>Colour of clumps</th>
<th>Reagent 1</th>
<th>Reagent 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>Shigella sonnei</td>
<td>Shigella dysenteriae</td>
</tr>
<tr>
<td>Blue</td>
<td>Shigella flexneri</td>
<td>Shigella boydii</td>
</tr>
<tr>
<td>None</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>Purple</td>
<td>Not interpretable</td>
<td>(further isolation procedures required)</td>
</tr>
</tbody>
</table>

Positive reaction report:
Shigella species,
“~presumptive identification, confirmation to follow.”
“~NOTE: Occasionally, some E. coli may identify as presumptive Shigella species using our current in-lab methodology; confirmation by Public Health Lab reference methodology to follow.”

VII. Quality Control:

Quality control testing should be run with each shipment and on new kit lot number received and performs QC weekly.

Positive Control Procedure:

1. Into 4 separate reaction circles, dispense 2 drops of latex reagent 1 and 2 (one drop per circle).
2. Add one drop of each positive control to 2 of the reaction circle (one containing latex reagent 1 and one containing latex reagent 2).
3. Mix the reagents using a separate disposable sampling stick for each positive control.
4. Rotate the card at 150 ± 5 rpm for 2 minutes on a rotator.
The color of the agglutinated latex in reagent 1 and reagent 2 should correspond to the color of the positive control (blue or red).

Negative Control Procedure:

Repeat the test procedure using saline instead of the test sample. There should be no significant agglutination.

VIII. Reference:

1. Oxoid Wellcolex Colour Shigella insert
SPOT INDOLE

Principle

Spot indole reagent is for determination of the ability of microorganisms to spit indole from the tryptophan molecule by the spot test method.

Reagents and Materials

- Inoculating loop
- Spot Indole Reagent – store product in at 2-30°C
- Filter paper

Procedure

1. Dispense 1 of 2 drops of reagent onto a piece of filter paper.
2. Smear growth from culture onto saturated filter paper
3. Observe for blue colour within 1-3 minutes

Interpretation

- **Positive Test** – Blue colour within 3 minutes
- **Negative Test** – Pink colour

Precautions

- Product should not be used if reagent colour has changed
- Test colonies from media without glucose
- Do not test from MAC or EBM agar. May produce false positives.
- Certain strains of *Proteus vulgaris*, *Providencia spp.*, and *Aeromonas spp.* Will give false negative results.
Quality Control

Positive: *E. coli* ATCC 25922

Negative: *Proteus mirabilis* ATCC 12453

Reference

Remel Thermo Scientific package insert July 2012.
STAINING METHODS

ROUTINE STAINS

GRAM STAIN

Principle

Bacteria can be recognized as gram positive (blue-black/purple) if they retain the primary dye complex of crystal violet and iodine in the face of attempted decolourization, or as gram negative (pink) if decolourization occurs as shown by the cell accepting the counterstain safranin.

Generally the mechanism of the Gram stain is: The fixed bacteria are stained with the triphenylmethane dye, crystal violet. Next the smear is flooded with Grams solution which oxidatively forms an insoluble complex with the crystal violet. The smear is then flooded with the organic solvent, acetone-alcohol. Depending on cell permeability the crystal violet-iodine complex will be washed from Gram negative bacteria in solvent but not from Gram positive bacteria. Upon counterstaining with safranin, organisms which had been discolorized by the ethanol (Gram negative) will stain pink. Gram positive organisms which retained the crystal violet will appear blue-black/purple microscopically.

Materials

Methanol
Crystal violet solution
Grams Iodine solution
Acetone alcohol
Safranin solution

Store solutions at room temperature. Refer to MSDS for storage requirements of alcohols.

Procedure

1. Prepare the film on the slide and allow to air dry. DO NOT HEAT TO DRY FILM.
2. When film is dry, flood slide with methanol to fix smear. Let smear dry completely before staining.
3. Flood slide with crystal violet - leave 1 minute.
4. Wash gently with water.

5. Flood slide with Grams Iodine - leave 1 minute.

6. Wash iodine from slide with acetone-alcohol mixture. Add a few more drops of acetone-alcohol until no more colour comes from film - usually 30 seconds.

7. Wash gently with water.

8. Flood slide with safranin - leave 1 minute.

9. Wash gently with water. Clean back of slide with tissue and place slide in tray.

Precaution

1. At no time should the film (smear) be exposed to too much heat. When the specimen is still wet, heat causes coagulation of the protein resulting in heavy overstaining which cannot be removed by the decolourizer. A thick smear will also show more tendency to "lift off" during staining.

2. Rinsing the Grams Iodine off with the decolorizer gives more stability to the CV-GI complex and false over decolorizing will not take place.

3. Flooding a hot slide with crystal violet will cause the stain to precipitate and make decolourizing much more difficult.

Note: Gram positive bacilli which are beaded or branching should be stained using the Modified Kinyoun and non-modified KINYOU N

Quality Control

Run control slides concurrently with unknowns at least once daily using known smears containing Gram positive and Gram negative bacteria.
GRAM STAINING MACHINE-MIDAS III OPERATION

Principle

Adapting the principle of Gram Stain, the MIDAS III will carry fixed smears through different staining solutions for a pre-set time to produce a Gram stained smear.

Materials

- Staining Rack
- Methanol
- Crystal violet solution
- Gram’s Iodine solution
- Acetone alcohol (50%/50%)
- Safranin solution

Store solutions at room temperature. Refer to MSDS for storage requirements of alcohols.

Instrument Programming Procedure

1. Press “Program”
2. Follow the instructions on the screen and program the duration of each staining step as follow:

For Program 1 (thin smears)

<table>
<thead>
<tr>
<th>Step</th>
<th>Station</th>
<th>Reagent</th>
<th>Time Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Crystal Violet</td>
<td>1 minute</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>Water</td>
<td>1 minute; flow rate 1500</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>Gram’s Iodine</td>
<td>1 minute</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>Water</td>
<td>1 minute; flow rate 1500</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>Acetone Alcohol</td>
<td>20 seconds</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>Water</td>
<td>1 minute; flow rate 1500</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>Safranin</td>
<td>1 minute</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>Water</td>
<td>1 minute; flow rate 1500</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>Dry bath</td>
<td>2 minutes</td>
</tr>
</tbody>
</table>

NOTE: This document is Uncontrolled When Printed.
Any documents appearing in paper form that do not state "CONTROLLED COPY" in red print are not controlled and should be checked against the document (titled as above) on the server prior to use.
For **Program 2** (thick smears):

<table>
<thead>
<tr>
<th>Step</th>
<th>Station</th>
<th>Reagent</th>
<th>Time Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Crystal Violet</td>
<td>1 minute</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>Water</td>
<td>1 minute; flow rate 1500</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>Gram’s Iodine</td>
<td>1 minute</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>Water</td>
<td>1 minute; flow rate 1500</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>Acetone Alcohol</td>
<td>45 seconds</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>Water</td>
<td>1 minute; flow rate 1500</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>Safranin</td>
<td>1.5 minutes</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>Water</td>
<td>1 minute; flow rate 1500</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>Dry bath</td>
<td>2 minutes</td>
</tr>
</tbody>
</table>

3. Press “End” to save program.

Procedure

Daily Set-up:
1. Remove staining station covers.
2. Discard old stains.
3. Wash containers with tap water.
4. Fill containers with fresh stains/decolourizer.
5. Record stain change in LIS micqc.

Staining Procedure:
1. Fix dry smears with methanol and air dry completely.
2. Load fixed smears on MIDAS III slide holder
3. Load holder onto the prongs of MIDAS III.
4. Press “RUN”, then “1” for regular thin smears OR “2” for thicker sputum smears.
5. Press “Enter”
6. Remove smear holder when staining is complete.

Quality Control

Run control slides concurrently with unknowns at least once daily using known smears containing Gram positive and Gram negative bacteria.
Reference
MIDAS III operation manual.
BACTO 3-STEP GRAM STAIN PROCEDURE

Principle

To be used for problem smears to determine the Gram reaction of organisms.

Materials

3-Step Stabilized Iodine Technique

Bacto Gram Crystal Violet
Bacto Stabilized Gram Iodine
Bacto 3-Step Gram Safranin-S

3-Step Technical Iodine Technique

Bacto Gram Crystal Violet
Bacto Gram Iodine
Bacto 3-Step Gram Safranin-T

Microscope slides
Bunsen burner or methanol
Bacteriological loop
Swabs
Blotting paper
Microscope with oil immersion lens
Bactrol™ Gram Slide
Bactrol™ Disks
Procedure

1. Flood the fixed smear with primary stain (Bacto Gram Crystal Violet) and stain for 1 minute.
2. Remove the primary stain by gently washing with cold tap water.
3. Flood the slide with mordant (Bacto Stabilized Gram Iodine or Bacto Gram Iodine (traditional formulation) and retain on the slide for 1 minute. (Refer to LIMITATIONS OF THE PROCEDURE, #5)
4. Wash off the mordant with decolourizer / counterstain (Bacto 3-Step Gram Safranin-S or Bacto 3-Step Gram Safranin-T). (NOTE: Do not wash off iodine with water). Add more decolourizer / counterstain solution to the slide and stain 20-50 seconds.
5. Remove the decolourizer / counterstain solution by gently washing the slide with cold tap water.
6. Blot with blotting paper or paper towel or allow to air dry.
7. Examine the smear under an oil immersion lens.

Interpretation

<table>
<thead>
<tr>
<th>REACTION</th>
<th>3-STEP TECHNIQUE using either Bacto Gram Safranin-S or Bacto Gram Safranin-T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram-positive</td>
<td>Purple-black to purple cells</td>
</tr>
<tr>
<td>Gram-negative</td>
<td>Red-pink to fuchsia cells</td>
</tr>
</tbody>
</table>

Quality Control

Run controls daily using 18-24 hour cultures of known gram-positive and gram-negative microorganisms.
ACRIDINE ORANGE STAIN

Principle

Acridine orange is a fluorescent dye which will bind to the nucleic acid of bacteria and other cells. It is recommended for use for the detection of microorganisms in direct smears. It is useful for the rapid screening of specimens from normally sterile sites (eg. CSF) and blood smears, or smears containing proteinaceous material where differentiation of organisms from background material may be difficult.

Reagents

Acridine Orange spot test dropper. Stored at room temperature
Absolute Methanol

Procedure

1. Prepare a smear of the specimen to be stained.
2. Allow to air dry.
3. Fix with methanol for 1 to 2 minutes.
4. Hold the dropper upright and squeeze gently to crush the glass ampoule inside the dispenser.
5. Flood the slide with the acridine orange and stain for 2 minutes.
6. Rinse thoroughly with tap water and allow to air dry.
7. Examine with a fluorescent microscope using low and oil immersion objectives.

Interpretation

Bacteria and fungus stain bright orange. The background appears black to yellow green. Leukocytes will stain yellow, orange and red.
Quality Control

Stain a smear of *Streptococcus pneumoniae* (ATCC 6303) each time the test is performed.

References

EOSINOPHIL STAIN

Principle

A stain for the detection of eosinophils in clinical specimens

Reagents

Methanol
AJP Scientific Eosinophil stain:
 Solution I - Eosin Y
 Solution II - Buffer Ph 6.5
 Solution III - Methylene Blue
 Stored at room temperature

Store reagents at room temperature. Store alcohols as per MSDS.

Procedure

1. Make a thin smear and spread evenly.
2. Fix slide by air drying or with methanol
3. Cover slide with solution I and leave for 30 seconds.
4. Add solution II to cover slide. Mix gently and allow to stain for 3 to 5 minutes.
5. Wash off with tap water and drain.
6. Cover slide with solution III and immediately wash off with tap water. Drain and air dry.

Interpretation

Eosinophils are stained with red cytoplasm and bright red granules.

Reference

STAINS FOR GRAM POSITIVE BRANCHING / BEADED BACILLI

ACID FAST STAIN FOR MYCOBACTERIA (KINYOUN)

Principle

To stain Mycobacteria present in specimens and cultures.

Mycobacteria are different to stain with common aniline dyes. However, they will stain with basic fuchsin. Once stained, they retain the dye despite treatment with mineral acids i.e. HCl H₂SO₄. This property of acid fastness may be due to a lipid fraction called mycolic acid. Mycobacteria also exhibit degrees of resistance to decolourization with alcohol.

Materials

Kinyoun Carbol fuchsin
3% HCl in 95% ethanol
Brilliant green

Store reagents at room temperature. Store alcohols as per MSDS.

Procedure

1. Prepare smear over an area of 2-3 sq. cm.
2. Heat fix smear with methanol.
3. Place slide on stain rack and allow to cool. Flood with Kinyoun Carbol fuschsin for 5 min.
4. Rinse off stain with water.
5. Decolourize with 3% acid alcohol for 3 mins.
6. Rinse with water.
7. Repeat decolourization for 1-2 mins. or until no red appears.
8. Rinse with water.

10. Rinse with water.

11. Air dry. DO NOT BLOT.

Microscopy

Place a drop of oil between the specimen and coverslip and oil again on top. Smears are examined with oil immersion lens. The coverslip prevents cross contamination.

Interpretation

The filaments of *Mycobacterium* species appear red-stained against a green background.

Quality Control

Mycobacterium Control Slide (Remel R40144) set up simultaneously with the processing of clinical specimens.

Control Results:

- Positive Control: Red-stained bacilli
- Negative Control: Blue-green-stained bacilli

References

ACID FAST STAIN FOR NOCARDIA (MODIFIED KINYOUN)

Principle

Nocardia species possess the unique characteristic of resisting decolorization with 1% sulfuric acid.

Materials

1. Carbol-fuchsin
 - Basic fuchsin solution (3 g basic fuchsin in 100 mL 95% ethyl alcohol) 10 mL
 - Phenol 5% aqueous 90 mL

2. Decolourizer (1% sulfuric acid)
 - H_2SO_4 (concentrated) 1 mL
 - Distilled water 99 mL

3. Methylene blue
 - Methylene blue 0.3 g
 - Distilled water 100 mL

Store reagents at room temperature.

Procedure

Prepare 2 smears: one for the Modified Kinyoun (procedure as follows), the other slide to be stained in parallel with KINYOUN method. *Do not make the smears too thick.*

Retrieve a Modified Kinyoun control smear for parallel staining.

1. Shake stains before use
2. Fix the smear by methanol, allot to air dry.
3. Flood the slide with Carbol fuchsin and allow to stand for 5 minutes
4. Rinse Carbol Fuchsin off the slide with tap water for 5 seconds
5. Wash the slide with 50% ethanol using the squirt bottle. This should be done for 5-7 seconds and all the film from the dye should be washed off.
6. Rinse slide with tap water for 5 seconds
7. Decolorize the slide by adding 1% sulfuric acid for 2 minutes. Place the slide on the rack over the sink and add fresh 1% sulfuric acid every 30 seconds - at 0s, 30s, 60s, 90s)
8. Rinse with tap water for 5 seconds
9. Flood the slide with methylene blue for 1 minute to counter stain
10. Rinse off methylene blue dye with tap water and then let slide air dry

Microscopy

Place a drop of oil between the specimen and coverslip and oil again on top. Smears are examined with oil immersion lens. The coverslip prevents cross contamination.

Interpretation

MODIFIED Kinyoun stain: the filaments of *Nocardia* species and *Rhodococcus* appear red-stained against a blue background.

Kinyoun stain: the filaments of *Nocardia* species and *Rhodococcus* should **NOT** show red-stained bacilli.

Quality Control

Positive control: *Nocardia* species.
Negative control: Streptomyces species.

References

REPORTING FOR GRAM POSITIVE BRACHING / BEADED BACILLI

If initial Gram smear shows:
 1+ pus cells
 3+ gram positive bacilli, branching
 or
 3+ gram positive bacilli , beaded

Stain new smear with Modified Kinyoun and KINYOUN for further characterization

Reporting:
Report as GRAM Test Comment:

Both modified and non-modified Kinyoun stains = negative:
Both Modified acid-fast and acid-fast stains: negative.
This suggests possible Actinomyces species. Culture confirmation to follow.

Both modified and non-modified Kinyoun stains = positive:
Modified acid-fast stain: positive. Acid-fast stain: positive. This suggests possible Mycobacterium species. Culture confirmation to follow.

Modified Kinyoun stain = positive; non-modified Kinyoun stain = negative:
Modified acid-fast stain: positive. Acid-fast stain: negative. This suggests possible Nocardia species. Culture confirmation to follow.
FLUOROCHROME STAIN for MYCOBACTERIUM

Principle

Mycobacteria possess the unique characteristic of resisting decolorization with acid alcohol as well as staining poorly, if at all with Gram stain.

Materials

BD TB Fluorescent Stain Kit (REF 212521):
- Auramine stain solution
- Decolorizer solution (Hydrochloric acid/Isopropanol)
- Potassium permanganate solution (0.5%)

Store reagents at room temperature.

Procedure

1. Place heat fixed smear on a staining rack.
2. Flood the smear with the thoroughly mixed auramine solution and let stand for 20 minutes.
3. Rinse the smear with tap water.
4. Decolorize the smear with decolorizer for 2-3 minutes.
5. Rinse with tap water.
6. Flood the smear with Potassium permanganate counterstain and let stand for 4-5 minutes. Excessive treatment (>5 min.) should be avoided as it may reduce the fluorescence of stained bacilli.
7. Rinse with tap water and air dry.
8. Examine slide under the UV microscope.
Interpretation

Acid fast organisms: reddish-orange fluorescence.
Confirm all positive results with a second fluorochrome stained smear

Quality Control

Mycobacterium Control Slide (Oxoid Cat. No. NRE-0454) - stain simultaneously with the processing of clinical specimens.

Expected Control Results:
Positive Control: bacilli with reddish-orange fluorescence
Negative Control: no fluorescence

Reference

BD TB Fluorescent Stain Kit T (REF 212521), Difco-BBL package insert
FUNGAL STAINS

Fungi-Fluor™ STAIN

Purpose

The Fungi-Fluor™ stain is used for the rapid identification of various fungal elements in fresh or frozen clinical specimens.

Principle

The active, colourless, fluorescing dye in the staining solution is Cellufluor which is the disodium salt of 4,4’-bis[4-anilino-6-bis-(2-hydroxyethyl) amino-s-triazin-2-ylamino]-2,2’-stilbenedisulfonic acid. Fungi-Fluor™ staining solution is a 0.05% solution of this dye in deionized water with potassium hydroxide added as a clearing agent. The Fungi-Fluor™ counter staining solution B is an aqueous solution of Evans Blue dye used to reduce background fluorescence. Cellufluor binds nonspecifically to beta-linked polysaccharides found in chitin and cellulose which are present in fungal cell walls.

When exposed to long wave UV light, fungal cell walls will fluoresce.

NB: Collagen, elastin, cotton fibres, plant material, some cells, cell inclusions and parasite cyst forms (e.g. Acanthamoeba) may fluoresce.

Materials

Staining Solution A
Counterstaining Solution B
Absolute alcohol
Water
Fluorescent Microscope (Leitz Ortholux with G filter module exciting filter BP 350-460, suppression filter LP515 or equivalent)

Precautions

1. Store in a dark or opaque bottle, tightly sealed, at room temperature.
2. Avoid eye or skin contact: use gloves and protective glasses.

Procedure

1. Prepare smear of specimen and allow to air dry.

2. Fix on the rack with absolute methanol for 5 minutes until dry. Fixed smears can be held indefinitely until ready to stain and examine.

3. Add one drop of Fungi-Fluor solution A (Cellufluor) for 1 minute.

4. Rinse gently with tap water.

5. Apply coverslip to wetted slide and examine with the fluorescent microscope using the designated filter. If there is a delay, add fresh distilled water to the coverslip just prior to examination.

6. Optional for thicker smears. Add few drops of the counterstain Fungi-Fluor solution B. Rinse gently with tap water and then proceed as in step 5 above.

NB: Gram stained smears can be overstained with Fungi-Fluor after removing immersion oil with alcohol. Similarly, Fung-Fluor stained slides may be overstained with other stains such as GMS, PAS, Geimsa, etc.

Quality Control

Stain a smear of *Candida albicans* daily.

Interpretation

Use 25x or 40x objective.

Fungal cell walls will fluoresce apple-green. Observe for characteristic morphology to differentiate from artifacts and background. When the counterstain is used, fungi will appear yellow-green against a red-orange background.
Appearance of other structures / organisms:

i) Fungal elements - intense peripheral staining with characteristic morphology.

ii) *Pneumocystis carinii* - fainter staining cyst wall (5-7 μm diameter) and intensely staining internal "been-shaped" or "double-parenthesis-like" structures with apposed sides flattened.

iii) *Acanthamoeba* sp. cysts - intensely staining double wall with wrinkled outer wall (10-25 μm diameter)

References

INDIA INK

Purpose

The procedure is applicable only to suspected positive Crytococcal cultures.

Procedure

1. For suspected Crytococcal cultures, make a wet preparation using saline on a clean glass slide, then add a small drop of India Ink and mix.

2. Apply a large coverslip ((22 x 40 mm) over the mixture and press it gently to obtain a thin mount.

3. If India Ink is too thick (dark), dilute it by 50% with saline.

4. Allow the preparation to stand for few minutes to settle.

5. Scan under low power in reduced light. Switch to high power if necessary.

Interpretation

The mucoid capsule appears as a clear halo that surrounds the yeast cell or lies between the cell wall and the surrounding black mass of India Ink particles. Capsules may be broad or narrow. The yeast cells may be round, oval or elongate. Buds may be absent, single or rarely multiple and may be detached from the mother cell but enclosed in a common capsule attached.

Reference

India Ink positive for Cryptococcus

Artefacts produced by reaction of India Ink (False Positive)
LACTOPHENOL ANILINE BLUE (LPCB)

Purpose

To determine the morphology of the conidiogenous cells and the conidia that they give rise to in order to identify a filamentous fungus.

Principle

LPCB contains lactic acid as a clearing agent, phenol as a disinfectant, glycerol to prevent drying and Aniline Blue which is the dye that stains fungi. LPCB is a wet preparation.

Procedure

1) TEASE PREP

The test must be performed in the Laminar Airflow Biosafety Cabinet. First, observe the gross morphology of the colony carefully to determine whether or not the culture is mouldy, granular or a mixture of both. It is important to prepare the LPCB preparation by "teasing" the fungus not "chopping" it.

Materials required for LPCB staining:

1. LPCB reagent
2. Probe to get the specimen
3. Teasing needles
4. Glass slides
5. Coverslips
6. Lead or wax pencils
7. Disinfectant bucket
8. Electric incinerator
9. Clear nail polish
10. Slide tray

Tease Prep Procedure:

1. Sterilize the loop and the needles in the incinerator and allow them to cool.

2. Label slide, place 2 drops of LPCB reagent on the slide.
3. Cut a small piece of the fungus from a granular or colored part of the colony, somewhere away from the central part towards the periphery and place the piece of the fungus in the LPCB in the upside down position.

4. Hold the thallus with the needle and gently tease the inverted side of the specimen into the staining (LPCB) fluid.

5. After enough teasing, remove all the solid particles and the agar from the mixture and discard in the disinfectant container.

6. Put a coverslip gently onto the LPCB preparation and hold the slide preparation briefly over the incinerator opening. Heating the slide will help to stain the cell wall of the fungi and kill the spores on the surface of the slide.

7. Seal the preparation with nail polish if necessary for a permanent mount.

8. Examine under the light microscope using the low power objective.

2) SCOTCH TAPE PREP FROM PLATE CULTURE
(Not done on suspected dimorphic fungi)

1. Place a drop of LPCB onto a clean glass slide, make a circle with Vaseline.
2. Take a small piece of clear scotch tape and loop back on itself with sticky sides out.
3. Hold the tip of the loop securely with forceps.
4. Press the sticky side firmly to the surface of the fungal colony.
5. Pull the tape gently away from the colony.
6. Open up the tape strip and place it on the drop of LPCB on the glass slide, making sure that the entire sticky side adheres to the slide. Add cover slip.
7. Examine under the light microscope.

Reference

STAPHAUREX TEST

Principle
A rapid slide latex test for the detection of clumping factor and protein A produced by most strains of S. aureus.

Reagents and Materials
Staphaurex latex suspension (store refrigerated 2-8°C)
Disposable reaction cards
Culture loop or wooden applicator stick

Procedure
1. Confirm the identification of a suspect Staphylococcus by Gram stain and catalase test.
2. Allow the latex reagent to warm to room temperature before use.
3. Shake the reagent so that all of the particles are re-suspended.
4. Dispense one drop of latex reagent onto the reaction card.
5. Add 1-3 colonies to the drop, mix well with a loop or wooden applicator stick.
6. Rock the slide for 20 seconds and look for clumping.
7. Discard the slide into a discard container.

Interpretation
Positive test: Clumping within 20 seconds with the sensitized latex particles.
Negative test: No clumping

Precautions
1. False positive results may occur after 20 seconds.
2. False positive agglutination can occur with E. coli and C. albicans
Quality Control

Test known positive and negative controls daily:

Positive: S. aureus (ATCC 25923)
Negative: S. epidermidis (ATCC 12228)

References

STREPTOCOCCAL GROUPING

Principle

This test is used to determine the Lancefield group of an isolate. Latex particles labelled with specific group antisera will agglutinate in the presence of the corresponding antigen after extraction with nitrous acid.

Reagents

Pro-lab Streptococcal grouping Latex kit. Store at 2-8°C.

Other Materials

Droppers
Disposable slides
Wooden stirring sticks
13x100 mm test tubes

Procedure

1. Label one test tube for each isolate.
2. Add 2 drops of Extraction Reagent 1 to each tube.
4. Shake tube to mix.
5. Add 2 drops of Extraction Reagent 2 to each tube.
6. Shake tube to mix.
7. Add 2 drops of Extraction Reagent 3 to each tube. Mix
8. Dispense one drop of each latex suspension to be tested onto separate circles on the test card.
9. Using a pasteur pipette, add one drop of extract to the latex suspension.
10. Mix the latex and extract with the wooden stick using the complete area of the circle.
11. Gently rock the card for 2 minutes and look for agglutination.
Interpretation

Positive: Strong visible agglutination within 2 minutes.

Negative: Milky appearance without visible agglutination.

Precautions

1. False positive reactions have been known to occur with organisms from unrelated genera e.g. *E. coli*, *Klebsiella* sp., *Pseudomonas* sp

Quality Control

Test reagents are checked weekly.

Each test should be tested with at least one extra grouping latex suspension as a negative control.

Reference

1. Pro-lab Streptococcal Grouping package insert.
STRING TEST

Principle

Hypermucoviscous *K. pneumoniae* (also known as hypervirulent *K. pneumoniae*) are associated with severe disease. In the mid-1980s and 1990s, reports were first published from Taiwan of a hypervirulent *K. pneumoniae* strain associated with community-onset pyogenic liver abscesses with a propensity for metastatic spread to distant sites including the eye and central nervous system causing endophthalmitis and meningitis in otherwise healthy individuals. Reports from other Asian Pacific Rim countries (Korea, Vietnam, and Japan) followed. Since then, reports in North America, South America, the Caribbean, Europe, and elsewhere have occurred. The syndrome is now recognized worldwide. Association with abscess formation at sites other than the liver is now recognized. Anecdotal reports suggest *K. pneumoniae* may undergo relapse months to years after their original infection. (Virulence 2013)

The string test is used to detect hypermucoviscous phenotype associated with hypervirulent strains of *Klebsiella pneumoniae* phenotype. However, it is not clear if all hypervirulent strains are string test positive. Whether non-virulent strains may possess a positive string test has also not been well studied. Of note, having a hypermucoviscous phenotype does not necessarily equate to having a mucoid phenotype. (BMJ 2013) (Virulence 2013)

Detection of rmpA: (regulator of mucoid phenotype A), a gene known as an extracapsular polysaccharide synthesis regulator, has been shown to be present in most but not all hypermucoviscous/hypervirulent *K. pneumoniae*. It is responsible for the overproduction of extracellular polysaccharide, distinct from capsule production. Other regulator genes able to switch on and off the hypermucoviscosity phenotype may also play a role. (CID 2006)

K1 and K2 capsular serotypes are common in hypermucoviscous *K. pneumoniae* strains but these are not specific as non-hypermucoviscous strains may also possess these serotypes nor are they sensitive as hypermucoviscous strains may have non-K1/K2 serotypes. (AAC 2014)

Experts advise clinicians dealing with *K. pneumoniae* bacteremia from an unknown focus make an effort to identify the hypermucoviscosity status of the strain. If isolates are positive for hypermucoviscosity by means of the string test or rmpA (regulator of mucoid phenotype A), it is advised that a detailed search for the underlying infectious origin, particularly abscess formation at metastatic sites be conducted, involving a new thorough physical examination and appropriate imaging tests. (CID 2006) (Virulence 2013)
Materials

10ul standard bacteriologic loop

Precautions

Isolate subcultured from the freezer must be subculture twice before testing to avoid false-negative string test results (CID 2006))

Procedure

String test is performed on all K. pneumonia isolates from blood cultures and sterile sites.

1. Obtain a fresh culture on 5% sheep blood agar incubated at 37°C overnight
 - if isolate is being subcultured from the freezer, subculture twice before testing to avoid false-negative string test results (CID 2006))

2. Using a standard 1ul bacteriology loop, touch a colony from the culture and hold for 1 second, then lift upwards and stretch a mucoviscous string from a colony.

3. Measure string formation in mm

4. Send the isolate to NML for “K. pneumoniae hypermucoviscosity PCR” testing (includes rmpA detection and serotyping) for:
 - An isolate testing positive for string test
 - An isolate testing negative for string test but specifically requesting testing for rmpA and serotyping
 - An isolate upon microbiologists approval

Interpretation

Positive: Formation of a viscous string ≥5mm in length.

Negative: Formation of a viscous string <5mm in length or No String Formation

Reporting

Negative - Testing for rmpA and serotyping was not specifically requested):

Report Klebsiella pneumoniae isolated.
Negative - Testing for rmpA and serotyping was specifically requested):

Report: *Klebsiella pneumoniae* isolated with comment:

“This isolate has a NEGATIVE String Test not consistent with a hypermucoviscous *K. pneumoniae* phenotype but the negative likelihood ratio of this test has not been established. Further characterization from the National Microbiology Laboratory to follow as requested.”

“*K. pneumonia* hypermucoviscosity PCR resulting from NML:

Report: *Klebsiella pneumoniae* isolated

“This isolate has a NEGATIVE String Test not consistent with a hypermucoviscous *K. pneumoniae* phenotype but the negative likelihood ratio of this test has not been established. Further characterization from the National Microbiology Laboratory is as follows:

- magA (K1) PCR: {insert results from NML}
- rmpA PCR: {insert results from NML}
- K2 PCR: {insert results from NML}
- K5 PCR: {insert results from NML}

as reported by the National Microbiology Laboratory (NML), 1015 Arlington St. Winnipeg, MB. Canada, R3E 3R2

NML Specimen No. {insert number on NML report}

Consultation with medical microbiology or infectious diseases is advised.”

Positive: Report *Klebsiella pneumoniae* isolated with comment:

“This isolate has a POSITIVE String Test consistent with a hypermucoviscous *K. pneumoniae* phenotype. Further characterization from the National Microbiology Laboratory to follow. Consultation with medical microbiology or infectious diseases is advised.”

“*K. pneumoniae* hypermucoviscosity PCR resulting from NML:
Report: *Klebsiella pneumoniae* isolated with comment:

“This isolate has a POSITIVE String Test which is consistent with a hypermucoviscous *K. pneumoniae* phenotype.

Further characterization from the National Microbiology Laboratory is as follows:

- magA (K1) PCR: {insert results from NML}
- rmpA PCR: {insert results from NML}
- K2 PCR: {insert results from NML}
- K5 PCR: {insert results from NML}

As reported by the National Microbiology Laboratory (NML),

1015 Arlington St. Winnipeg, MB. Canada, R3E 3R2

NML Specimen No. {insert number on NML report}

Consultation with medical microbiology or infectious diseases is advised.”

Quality Control

Test the following positive and negative controls each time an unknown is tested:

- Positive: *K. pneumoniae* (ATCC 13383)
- Negative: *K. pneumoniae* (CAP98D)

Reference

Hadano Y. String Test, BMJ Case Rep 2013. doi:10.1136/bcr-2012-008328

THERMONUCLEASE TEST

Principle

Staphylococcus aureus contains a heat-stable thermonuclease and coagulase negative staphylococcus does not. This is a rapid test to differentiate between the two organisms.

Materials

Toluidine blue-O DNA plate (Q-Lab). Store plates at 2-8°C.

13x100 mm tube with white cap

pasteur pipettes

Procedure

1. Dispense 2 - 3 mL of blood broth from BacT/Alert bottle showing gram positive cocci in clusters in the direct Gram stain into a sterile capped 13x100 mm tube.
2. Place tube in heating block, 100°C for 15 minutes.
3. Let cool to room temperature.
4. Centrifuge at approximately 2500 rpm for 3 minutes.
5. Inoculate a pre-warmed (35°C for 1 hour) toluidine blue-O DNA plate by filling wells (cut well with the end of a pasteur pipette) with 2 drops of the supernatant.
6. Incubate the plate at 35°C in the upright position (agar side down).
7. Inspect the plate at, 1 hour, 2 hours and 4 hours and again after overnight incubation if negative at 4 hours.
8. Always run negative and positive control wells with each plate each day.

Interpretation

Positive: Pink zone of clearing at the edge of the well with a darker blue ring at the outer periphery of the zone; indicates thermonuclease activity

Negative: No zone or a small clear zone around the well
Quality Control

1. Inoculate 5 day negative patient BacT/Alert bottles with 0.5 mL of a slightly turbid suspension of (a) *S. aureus* (ATCC 25923) and (b) *S. epidermidis* (ATCC 12228) in trypticase soy broth.

2. Incubate the bottles overnight at 36°C on the shaker.

3. Remove 3 - 6 mL of the broth-blood from the bottles and process in the same manner as the patient specimens (steps 1 to 4). Always QC new controls before use with patient specimen

3. Supernatants may be kept refrigerated for up to 1 month for use as controls.

Reference

TRIBUTYRIN TEST

Principle

A rapid chromogenic test for the identification of *M. catarrhalis*

Reagents

Prolab Tributyrin (TRIB) tablets
- Store at 8-28°C
Sterile saline

Other Materials

Sterile tubes (13 x 100 mm)

Procedures

1. Suspend the suspect colonies in 0.25 mL (6 drops) saline to achieve the turbidity >#2 McFarland standard.
2. Add 1 tablet to the tube.
3. Incubate at 35°C x 4 hours.
4. Examine the tube for development of a yellow colour.

Interpretation

Positive: Yellow/yellow orange colour
Negative: Red

Quality Control

Test the following organism weekly:

Positive: *M. catarrhalis* (ATCC 8176)
Negative: *N. gonorrhoeae* (ATCC 43069)

References

ROSCO Diagnostica
TSI (TRIPLE SUGAR IRON)

Principle

To determine the ability of an organism to attack a specific carbohydrate incorporated in a basal growth medium, with or without the production of gas, along with the determination of possible hydrogen sulfide (H₂S) production. This test is used, in conjunction with others, for the identification of enteric pathogens.

Materials

TSI Slant – Store at 2-8°C
Inoculating wire or sterile glass pasteur pipette.

Procedure

1. Using an inoculating wire, dip into the previously inoculated TSB.
2. Stab the butt of the TSI to within 1/4 inch from bottom, draw out and fishtail over slant. Do not tighten cap.
3. Incubate O₂, 35°C X 18-24 hours.

Interpretation

Carbohydrate utilization:

1. Fermentation of glucose only
 (a) Slant: red colour (alkaline reaction)
 (b) Butt: yellow colour (acid reaction)

2. Fermentation of glucose and sucrose and/or lactose
 (a) Slant: yellow colour (acid reaction)
 (b) Butt: yellow colour (acid reaction)

3. Neither glucose nor lactose nor sucrose fermented
 (a) Slant: red colour (alkaline reaction)
 (b) Butt: (i) Aerobic organism
 (a) No growth
 (b) No colour change
 (ii) Facultative organism
 red colour (alkaline reaction)
Gas production:

1. Aerogenic:
 (a) Gas production: CO₂ and H₂
 (b) Evident by one of the following:
 (i) a single gas bubble
 (ii) bubbles in the medium
 (iii) splitting of medium
 (iv) complete displacement of the medium from bottom of the tube leaving a clear area
 (v) slight indentation of medium from the side of the tube

2. Anaerogenic:
 No gas production

H₂S production:

The presence of a black precipitate (ferrous sulfide) is evident by:
(i) A black colour spread throughout the entire butt masking the acidity; may even be a slight evidence on the slant
(ii) A black ring near the top of the butt area
(iii) A black precipitate scattered throughout the butt but not entirely masking the acidity present

Summary:

The ways of recording the TSI reactions are listed below. Remember that the slant is first, followed by the butt reaction.

acid/acid +/-
acid/acid/gas +/- with gas
acid/acid/gas/H₂S +/- with H₂S
alkaline/acid -/+
alkaline/acid/gas -/+ with gas
alkaline/acid/gas/H₂S -/+ with gas and H₂S
alkaline/acid/H₂S -/+ with H₂S
alkaline/alkaline +/-
Precautions

1. The TSI tube should be read within 18-24 hr. If read earlier, a false +/- reaction may occur; if after 24 hr, a false -/-reaction may occur.

2. An H₂S organism may produce so much black precipitate that the acidity in the butt is completely masked. If H₂S is produced, an acid condition exists in the butt.

3. There is no inhibitor in this medium, therefore any organism may grow. Be certain that the organism tested is a catalase positive, gram negative bacillus.

4. *S. typhi* usually produces a ring of H₂S near the surface of the butt. Occasionally the amount of H₂S produced is so small that it will not be detected in TSI, but will show up in SIM media.

5. Some organisms produce such an abundance of gas that the medium may be completely displaced by gas, resulting in the medium being blown up into the cap of the tube. Use caution to avoid contamination.

6. Do not tighten the cap of a TSI tube. A free exchange of air is necessary to enhance the alkaline reaction of the slant.

Quality Control

Test the media each time it is prepared using the following organisms:

- *E. coli*: (ATCC 25922): +/-
- *P. mirabilis*: (ATCC 12453): -/+H₂S
- *P. aeruginosa*: (ATCC 27853): -/

References

TUBE COAGULASE TEST

Principle

This test is used to speciate staphylococci by determining the ability of an isolate to clot plasma by producing the enzyme coagulase.

Reagents

Rabbit plasma (pre dispensed) – Stored at -20°C. Thaw before use.

Other Materials

Culture loop or wooden applicator stick

Procedure

1. Emulsify a large loopful of a pure colony of *Staphylococcus* into the plasma.
2. Incubate at 35°C for 4 hr, observing every 30 minutes for clot formation.
3. If there is no visible clot at the end of 4 hours, leave at room temperature overnight and observe for clot formation.

Interpretation

Positive: Clot formation

Negative: No clot formation

Precautions

1) When observing the tube, do not shake or agitate the tube.
Quality Control

Each time a coagulase test is performed; known positive and negative cultures must be tested.

Positive:
S. aureus (ATCC 25923)

Negative:
S. epidermidis (ATCC 12228)

References

UREA SLANT

Principle

To determine the ability of an organism to split urea by the action of the enzyme urease forming two molecules of ammonia with resulting alkalinity

Materials

Urea Slant – Store at 2-8°C
Bacteriology loop

Procedure

1. From one isolated colony, heavily inoculate the urea slant.
2. Incubate O₂, 35°C.
3. Read at 3 hours and again at 18-24 hours.

Interpretation

Positive: Intense pink-red colour.
Rapidly positive: 1 to 6 hours (*Proteus* spp.)
Delayed positive: ≥ 18 hours

Negative: No colour change

Precautions

Urea test media rely on the demonstration of alkalinity, thus are not specific for urease. The utilization of peptones or other proteins may cause an increase in pH.

Quality Control

Controls should be set up weekly.

- *P. mirabilis* (ATCC 12453): Positive - 4 hours
- *K. pneumoniae* (ATCC 13883): Weak positive - 18 hours
- *E. coli* (ATCC 25922): Negative
References

Record of Edited Revisions

Manual Section Name: Technical Manual

<table>
<thead>
<tr>
<th>Page Number / Item</th>
<th>Date of Revision</th>
<th>Signature of Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Review</td>
<td>August 3, 2003</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Annual Review</td>
<td>May 16, 2004</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Annual Review</td>
<td>April 20, 2005</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Annual Review</td>
<td>April 10, 2006</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>API website login change</td>
<td>March 14, 2007</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Annual Review</td>
<td>April 11, 2007</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Gen-Probe for S. aureus ID added</td>
<td>April 11, 2007</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Gram Staining machine MIDAS III added</td>
<td>April 11, 2007</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Fluorochrome stain for Mycobacterium – name of stains added to the procedure steps.</td>
<td>April 11, 2007</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Page number changes</td>
<td>April 11, 2007</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Added quantitation of AFB smear to Quantitation of Smear and Culture</td>
<td>April 11, 2007</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Annual Review</td>
<td>April 11, 2007</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Operation of Gen-Probe Luminometer Instructions changed</td>
<td>July 30, 2007</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Optochin Test – change from MHB to BA</td>
<td>July 30, 2007</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>ACCUPROBE S. aureus Operation of GEN-PROBE luminometer change</td>
<td>Dec 4, 2007</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Change Gram quantitation for ± to report as “Few”</td>
<td>April 1, 2008</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>New procedure change for Streptococcus grouping</td>
<td>April 29, 2008</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Anaerobic jar organisms – wrong QC organism listed – changed</td>
<td>April 29, 2008</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Annual Review</td>
<td>April 29, 2008</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Added API strep strip</td>
<td>April 29, 2008</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Removed ACCUPROBE for S. aureus ID</td>
<td>April 29, 2008</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Removed CRYSTAL for MRSA ID</td>
<td>April 29, 2008</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Cryptococcal Antigen revised</td>
<td>April 29, 2008</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Gram Stain revised</td>
<td>July 27, 2010</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Annual Review</td>
<td>April 29, 2009</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Annual Review</td>
<td>April 29, 2010</td>
<td>Dr. T. Mazzulli</td>
</tr>
</tbody>
</table>

NOTE: This document is *Uncontrolled When Printed.*

Any documents appearing in paper form that do not state “CONTROLLED COPY” in red print are not controlled and should be checked against the document (titled as above) on the server prior to use.
<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 29, 2011</td>
<td>Added Phadebact Monoclonal</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>December 12, 2011</td>
<td>Annual Review</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>April 20, 2012</td>
<td>Annual Review</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>May 31, 2013</td>
<td>Shigella Latex Agglutination added</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>December 16, 2013</td>
<td>For N. gonorrhoeae, confirmed ID by API NH before reporting</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>December 16, 2013</td>
<td>Added reporting for characterization of beaded or branching gpb</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>June 17, 2014</td>
<td>Do Modified Kinyoun and non Modifies Kinyoun stain for all beaded or branching Gram positive bacilli</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>June 17, 2014</td>
<td>Removed Kinyoun and added a second fluorochrome stained smear as confirmation stain for positive fluorochrome stained smear</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>July 25, 2014</td>
<td>Reformat headers/footers</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td></td>
<td>Removed sections:</td>
<td></td>
</tr>
<tr>
<td>1) Anaerobic Id Potency Disk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2) SPS disk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3) Gene Probe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4) Gonogen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5) Hippurate Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6) Neisseria Id sugars</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7) Rapid Yeast Plus Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8) SIM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9) Tetrazolium Reduction Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10) Xylose Fermentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Changes:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Anaerobic jars —using C. sordellii not C. novyii</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Campy 42C removed “walk in” from type of incubator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Strep strip API changed copule to cupule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- rapid VP changed milleri to Strep. Anginosus group.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Kinyoun: changed 1 hour fixing smear to fix on heating block. Crypto Ag:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- change from water bath to heating block</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- corrected centrifugation speed; details on how to rate positive and negative test, Added nonspecific interpretation and reporting comment.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual Review</td>
<td></td>
<td></td>
</tr>
<tr>
<td>March 10, 2015</td>
<td>Salmonella serology agglutination test added</td>
<td>Dr. T. Mazzulli</td>
</tr>
</tbody>
</table>
Revised decolourization step for Modified Kinyoun
Addition of mycology staining methods
Removed High level link and replaced with Blacta link in TOC
Annual Review

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revised decolourization step for Modified Kinyoun</td>
<td>March 11, 2015</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Addition of mycology staining methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Removed High level link and replaced with Blacta link in TOC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual Review</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Added String test</td>
<td>September 29, 2015</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Update of wording of stains for GP branching bacilli</td>
<td>October 20, 2015</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>- updated QC slide for kinyoun stain from to Oxoid from microbiologics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- kinyoun background from blue to green</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Removed reporting phrase for gpb beaded/branching</td>
<td></td>
<td></td>
</tr>
<tr>
<td>“Further characterization of gram positive bacilli, branching / Further characterization of gram positive bacilli”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>String Test p.123 Procedure</td>
<td>December 3, 2015</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>- changed look from 10ul loop to 1ul loop.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Added to hold loop on colony for 1 second then lift upward</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Added Remel Shigella Serology testing</td>
<td>March 1, 2016</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Annual Review</td>
<td>March 6, 2016</td>
<td>Dr. T. Mazzulli</td>
</tr>
<tr>
<td>Updated MSH logo in header</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Updated references</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Included containers with jars to anaerobic and campy plate set up.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bile solubility, updated negative control to S. sanguinis ATCC 10556</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catalase updated negative control from GAS to E. faecalis ATCC 29212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0157 serology: added for best results to sub NSF to BA plate prior to testing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pastorex Staph Plus test: clumping within 30sec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Archive: PRO-AMP-GLU-AMP tests for Neisseria PYR: change from disk to BD BBL dry slide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kinyoun QC slide changed from oxoid to remel Tube coagulase reagent updated to pre-dispersed (non reconstituted.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Added spot indole procedure.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Updated references.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: This document is Uncontrolled When Printed.

Any documents appearing in paper form that do not state "CONTROLLED COPY" in red print are not controlled and should be checked against the document (titled as above) on the server prior to use.
Updated all staining procedures to methanol fixation and added methanol to staining materials. “When film is dry, flood slide with methanol to fix smear. Let smear dry completely before staining.”

| Removed heat fixation for all staining methods. |
| April 12, 2016 | Dr. T. Mazzulli |

Updated Shigella serological procedure to include “When to test” statement under procedure: Testing should be performed on suspect colonies from a fresh culture (18-24 hours) sub cultured on a non-selective agar e.g. BA, TSI. Do not use MAC or HEK plates to perform agglutination test.

| Welcollex test: |
| September 7, 2016 | Dr. T. Mazzulli |
| - Saline modified from 0.85% to 0.45% |
| - 150RPM changed to 80RPM |

Annual Review
| March 6, 2016 | Dr. T. Mazzulli |

Modified Kinyoun staining procedure updated, including ethanol step.
| April 5, 2017 | Dr. T. Mazzulli |

Modified Cryptococcus Antigen: Addition of documenting agglutination on worksheet, addition of having second verifier with documentation and agglutinating visual photo added showing degrees of grading agglutination.
| May 17, 2017 | Dr. T. Mazzulli |

Updated Rapid ANA Eric website/login information
Corrected Crytpo antigen volumes from 500ul serum/pronase to 200ul as per package instructions.
| August 15, 2017 | Dr. T. Mazzulli |

Annual Review
Updated Cryptococcus positive comment for titres <=1:4
| April 3, 2018 | Dr. T. Mazzulli |

Removed API ID and password. Refer to seniors
| May 9, 2018 | Dr. T. Mazzulli |

Storage temperature completed for reagents.
| May 28, 2018 | Dr. T. Mazzulli |